[发明专利]一种三维点云中的多平面自动识别方法有效
申请号: | 201510350352.4 | 申请日: | 2015-06-23 |
公开(公告)号: | CN105046688B | 公开(公告)日: | 2017-10-10 |
发明(设计)人: | 王亮;申超;吴至秋 | 申请(专利权)人: | 北京工业大学 |
主分类号: | G06T7/40 | 分类号: | G06T7/40 |
代理公司: | 北京思海天达知识产权代理有限公司11203 | 代理人: | 沈波 |
地址: | 100124 *** | 国省代码: | 北京;11 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 一种 三维 中的 平面 自动识别 方法 | ||
技术领域
本发明涉及计算机视觉的三维感知和机器人导航等领域、特别涉及三维点云中物体的自动检测与识别。
背景技术
操作便捷经济实用的深度传感器迅速发展和普及,使得人们可以在日常生产生活中方便地获得海量的三维数据。但是一个挑战性问题应运而生:如何利用计算机自动高效地分析蕴含大量信息的三维数据。相比于二维图像,三维数据具有准确的深度信息,能更精确地描述现实世界的几何属性。从杂乱无序的三维点云中识别平面,获取物体准确的位置和范围等几何属性,是计算机感知世界以及与环境互动的首要问题。
经典的平面检测识别方法为贪婪搜索法,如Hough变换(Hulik R,Spanel M,Smrz P,et al.Continuous plane detection in point-cloud data based on 3D Hough Transform[J].Journal of Visual Communication&Image Representation,2014,25(1):86–97.)能快速地检测出平面,但检测时需要庞大的参数空间,参数空间中各个轴的单位尺度严重影响了平面参数估计的准确度。改进的RANSAC算法(Schnabel R,Wahl R,Klein R.Efficient RANSAC for point-cloud shape detection.Computer graphics forum.Blackwell Publishing Ltd,2007,26(2):214-226.)在同时处理多个平面时,会出现误拟合的问题,常把大量的噪声点拟合成模型。这些方法割裂了内点分类和参数估计间既相互依赖又彼此矛盾的关系,造成识别效率和准确度低,不能很好地解决多个模型的识别问题。
发明内容
为克服现有方法的不足,本发明的目的是提供一种较为实用的、高精度的三维点云中的多个平面的自动识别方法。
为了实现上述目的,本发明提供了一种三维点云中的多平面自动识别方法,包括步骤如下:
1)根据平面模型计算误差能量、平滑能量和标签能量,作为判断点是否属于某平面的标准,构造能量函数。误差能量衡量单个点属于某平面的可能性,平滑能量根据点与其邻域点的平滑性来衡量二者是否归属于同一平面,标签能量来约束平面的个数防止因噪声点和外点的影响而过拟合出过多平面。
2)用α-Expansion能量最小化方法将平面的标签标注给点云中的点,使各个平面的能量和最小,即可得到平面的内点。
3)再由得到的平面内点利用最小二乘法分别重新估计对应平面的参数,并把参数接近的平面对应的内点融合,作为下一次能量优化的前提。
通过能量来定义平面识别的标准,某点不符合标准则加大对该点的惩罚认为其不是平面的内点,同时利用基于条件随机场的图割优化算法,找到能量的最小值并标注出内点对应的平面标签,即把平面的标签标注给点云中的点,以此迅速准确地得到多平面的内点,并进而利用平面内点重新估计平面参数改进估计精度。
三维点云中的多平面自动识别方法各步的详细说明如下:
步骤1:通过三维激光扫描仪、体感传感器等深度传感器扫描待检测场景,将得到待检测场景的三维点云作为输入;
步骤2:对点云进行随机采样,计算出多个初始平面模型的参数;
步骤3:计算出多个平面模型的误差能量、平滑能量和标签能量,构造能量函数,用α-Expansion图割能量优化算法得到能量和的最小值,并标注出平面模型对应的内点;
步骤4:对各个平面的内点进行最小二乘拟合重新估计平面参数改进估计精度,将平面参数相近的内点融合为一个平面,把内点数目极少的点集标注为外点;
步骤5:按照步骤3重新计算精确的平面模型的各个能量项并得到模型内点,按照步骤4进行参数改进和内点整合,直至能量不再减小,输出各个平面的参数、内点和不属于任何平面的外点。
所述的方法可以综合利用内点分类和参数估计两者间既相互依赖又相互矛盾的关系,克服了现有贪婪搜索式算法对距离、角度等阈值的依赖,本方法更适合多平面的自动识别,大大提高了对三维点云的物体识别分析能力。
本发明的有益效果是可以对整体点云进行一次处理就可自动识别出多个平面,不需要像改进的RANSAC方法那样识别出一个平面后将对应点从点云中剔除然后再对剩余点云重复上述操作识别新的平面。相比于Hough变换和RANSAC算法,各个平面内点分类准确合理,参数估计更准确,速度更快。
附图说明
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于北京工业大学,未经北京工业大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201510350352.4/2.html,转载请声明来源钻瓜专利网。