[发明专利]一种用于从fMRI数据中构建脑效应连接网络的人工免疫方法有效

专利信息
申请号: 201510370320.0 申请日: 2015-06-29
公开(公告)号: CN105022934B 公开(公告)日: 2018-03-09
发明(设计)人: 冀俊忠;刘金铎 申请(专利权)人: 北京工业大学
主分类号: G06F19/12 分类号: G06F19/12;G06K9/62;G06K9/66
代理公司: 北京思海天达知识产权代理有限公司11203 代理人: 沈波
地址: 100124 *** 国省代码: 北京;11
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 一种 用于 fmri 数据 构建 效应 连接 网络 人工免疫 方法
【权利要求书】:

1.一种用于从fMRI数据中构建脑效应连接网络的人工免疫方法,该方法充分利用了贝叶斯网方法的优势;并利用免疫系统的多样性产生和维持机制来保持种群的多样性,克服了一般寻优过程易陷入局部最优而出现早熟收敛的问题,使得最终获得的最优网络结构更加贴近fMRI数据所反映的脑效应连接网络;

该方法的过程为:获取静息态fMRI数据;使用SPM8对数据进行预处理;选取与脑网络构建相关的感兴趣区域;通过人工免疫系统优化贝叶斯网结构学习方法,针对提取的感兴趣区域进行脑效应连接网络的构建;对每个受试者的脑效应连接网络进行分析,揭示网络连接所表示的生物学意义,构建具有一般性的脑效应连接网络,反映人脑网络连接的普遍性规律;

其特征在于:该方法包括以下步骤:

步骤1)实验设计;由于为了揭露人脑连接性的一般性规律,实验采用静息态实验;

步骤2)fMRI数据获取;为了将本方法与现有的脑效应连接网络构建方法进行对比,除了使用对受试者进行磁共振扫描所获的真实数据以外,还选用了一组仿真数据集;因为真实的数据所构建的网络并没有统一的标准来衡量,所以选用一组的仿真数据集来进行对比实验,以此进行方法的对比,验证本方法的有效性;

步骤3)fMRI数据预处理;数据预处理的作用是去除原数据的误差和干扰;数据预处理首先使用统计参数图软件包来实现;为避免磁共振机器每个session启动时的匀场效应及受试者初入环境的不适应对结果造成一定影响,删除每个被试每个session前四幅功能图像,随后进行层间时间校正、头动校正,然后进行空间标准化、高斯平滑;

步骤4)选取感兴趣区域;由于fMRI数据具有高维的特点,直接使用全脑时间序列数据,数据量会很大;本方法在真实fMRI数据部分,选用默认网络(DMN)作为感兴趣区域;因为通常在个体清醒静息的状态,不专注于外界时,默认模式网络就会活动;因此默认网络作为静息态实验的感兴趣区域会有很好的效果和实际意义;对于仿真fMRI数据部分,本方法选取了具有10个感兴趣区域的数据集;随后,继续使用SPM软件,将所有被试的脑功能影像数据映射到选取的感兴趣区域位置,提取每个脑区内所有体素的时间序列,并做平均,获得每个脑区的平均BOLD信号,然后对信号进行带通滤波处理以消除低频漂移和高频噪音的影响,至此图像数据已转化成构建网络所需要的时间序列数据;

步骤5)使用人工免疫系统构建网络;包括以下几个步骤:初始化参数;产生初始抗体群,随机产生n个抗体并从记忆库中选取m个抗体构成初始群体;亲和度计算,对初始种群进行亲和度计算,亲和度计算的方法采用K2评分,通过评分的好坏来反映网络和fMRI数据匹配的程度;执行免疫选择操作,按照亲和度计算的结果,选取亲和度较高的a个抗体;执行克隆操作,对之前免疫选择的a个抗体进行克隆,克隆的规模由原抗体数和选择的个体数共同决定;执行交叉变异操作,通过交叉运算,形成新的种群,并对新形成的种群进行变异运算;执行克隆抑制操作,为避免种群的冗余,保持结构的多样性,将相同的抗体删除,直到抗体浓度为1即相同的抗体只保留一个;种群更新,选取当前最好的抗体,直到迭代结束,输出最优抗体即最优网络结构;最终得到的最优抗体的网络结构就是从fMRI数据中学习到的效应连接网络;

步骤6)网络结构分析;对于学得的网络结构,节点表示脑区,边表示一个脑区对另一个脑区直接或间接的影响,关注时间先后的因果效应,刻画了神经单元之间相互作用的方向性;选取的是默认网络中的后扣带回PCC、左侧顶下小叶LIPL、右侧顶下小叶RIPL、前额叶内侧面MPFC作为感兴趣区域,通过观察区域之间的连接性,发现静息态下默认网络中子网络的相互影响关系。

2.根据权利要求1所述的一种用于从fMRI数据中构建脑效应连接网络的人工免疫方法,其特征在于:通过仿真fMRI数据集和真实fMRI数据集两部分来阐述本方法的具体实施方式和详细步骤:

步骤1实验设计;

本方法共征集20名健康志愿者,实验采用静息态实验,fMRI数据采集是在3.0T磁共振成像扫描仪上对所有被试完成头部扫描;被试平躺于扫描仪内,并由专门衬垫固定被试者头部,以防止扫描过程中头动;

步骤2fMRI数据获取;

fMRI数据包括两部分:真实fMRI数据和仿真fMRI数据;真实fMRI数据,全脑功能像由EPI序列获得,相关参数如下:TR(扫描重复时间)=2000ms,TE(回波时间)=31ms,FOV(视野范围)=240×240mm2,gap(层间距)=lmm,FA(翻转角度)=9°,slicethickness(层厚)=4mm,体素(Voxel)大小为1×1×1mm,共32层横断位图像覆盖全脑;根据fMRI数据特点生成的仿真数据,相关参数如下:Sessionduration(扫描时间)=10min,TR(重复时间)=3s,Noise(噪声)=1%,HRFstd.dev(血液动力学响应)=0.5;

步骤3fMRI数据预处理;

所有的预处理操作都是使用统计参数图SPM完成;为避免磁共振机器每个session启动时的匀场效应及受试者初入环境的不适应对结果造成一定影响,删除每个被试每个session前十幅功能图像,随后进行层间时间校正、头动校正、空间标准化到人类标准脑模板空间,再进行数据重采样;随后对功能图像进行高斯平滑,减少空间噪声;

步骤4选取感兴趣区域;

本方法的真实fMRI数据选用默认网络(DMN)作为感兴趣区域,包括以下子网络:PCC(后扣带回)、LIPL(左侧顶下小叶)、RIPL(右侧顶下小叶)、MPFC(前额叶内侧面);

表1 划分区域与默认网络

将所有受试者的脑功能影像数据映射到选取的四个感兴趣区域位置,提取每个脑区内所有体素的时间序列,并做平均,获得每个脑区的平均BOLD信号,然后对信号进行带通滤波处理以消除低频漂移和高频噪音的影响;

所采用的仿真数据集使用的ROI共有10个区域,但这10个区域并不具有实际的意义;数据具体特征如下:

表2 数据具体特征

实验选取HRF=0.5s的位置在图中是最高点,即是反应程度最明显的地方;

步骤5使用人工免疫系统构建网络;

本方法采取的是基于人工免疫系统的贝叶斯网结构学习方法,该方法是一种评分搜索的结构学习方法;通过对学习的网络结构进行评分,寻找与fMRI数据集相匹配的网络结构,最终学到高质量的脑效应连接网络;结构学习过程包括以下步骤:

步骤5.1,初始化参数:包括抗体群数目An,抗体群数目代表了种群的规模,选取的大小应尽量保证解可以成熟收敛并不造成过多冗余;记忆库容量Rn,记忆库是用来将优秀的抗体存起来,并随着代数不断增多可以存下更为优秀的抗体,记忆库容量的选择应尽量保证优秀抗体可以被存起来;抽取率Er,从记忆库中抽取抗体的比率,它决定初始化种群中,随机产生的种群和记忆库中种群的比例;采样率Sr,免疫选择过程中,选取优秀抗体的比例;交叉率Cr,抗体群发生交叉的概率;变异率Ar,抗体群发生变异的概率;

步骤5.2,初始化抗体群:生成种群大小为An的初始抗体群;初始抗体群An由两部分组成:包括随机产生的n个抗体和记忆库中选取的m个抗体;n与m的大小由抗体群数目An,记忆库容量Rn,抽取率Er决定;其计算公式如下:

m=Rn*Er;n=An-m;---(1)]]>

从公式中可以看出,当记忆库中没有优质抗体的时候,也就是种群初次构建的时候,抗体主要靠随机初始化产生;而当不断有优质抗体进入记忆库时,种群的构建则依赖于记忆库中的抗体;这也正好反映了人工免疫系统的机制,同一个抗原第二次侵入时,免疫系统可以快速找到与之相似的抗体进行抵御;

初始化图的过程为:每一个抗体从一个不含有任何弧的空图开始,图的节点数由步骤4的感兴趣区域个数决定,一个感兴趣区域代表一个节点;随机选取两个节点,规定一个节点为起始节点,另一个节点为终止节点,构建一条从起始节点到终止节点的弧;如果该弧的增加不会使网络结构出现环路,则添加成功,反之添加失败;循环上述增弧过程,直到满足终止条件即无法继续添加弧或达到规定弧数;

步骤5.3,亲和度计算:采用K2评分,作为抗体的亲和度;k2评分的大小反映了图结构与数据集的关联程度,因此可以用来刻画抗体与抗原的亲和度;从统计学的观点来看,一个网络结构是一个统计模型,在这种方法中,基本的思想是应用从观测数据中获得的网络结构的后验概率作为尺度来测量一个网络的质量;要比较两个网络结构G1,G2的计算似然比:

P(G1|D)P(G2|D)=P(G1,D)P(G2,D)---(2)]]>

其中用P(G,D)作为评分函数,具体公式如下:

P(G,D)=P(G)P(D|G)=P(G)Πi=1Np(xi|G)=P(G)Πi=1nΠj=1qi(ri-1)!(Nij+ri-1)!Σk=1riNijk!---(3)]]>

其中P(G)是网络结构G的先验概率分布;评分的目的解释为:如果对于所有的网络结构G,一个网络结构G0有P(G0,D)≥P(G,D),那么对于当前的数据集D来说,G0是评分而得最符合数据集D的网络结构;在算法实现过程中,通常对公式(3)进行化简,用log(P(G,D))来代替P(G,D),从而得到评分函数如下:

fk2(G,D)=Σtnfk2(xi,Π(xi):Nxi,Π(xi))fK2(xi:Π(xi):Nxi,Π(xi))=Σi=1qi(log(((ri-1)!(Nij+r1-1)!))+Σk=1r1log(Nijk!))---(4)]]>

步骤5.4,执行免疫选择操作;优秀的抗体由于对抗原有很好的反映,因此将产生以助于免疫系统的增强,而劣质的抗体由于未能有效对付抗原,因此被遗弃;根据亲和度计算的结果,从抗体群中选取亲和度较高的n个抗体作为候选抗体;其中n的取值为:

n=An*Sr(5)

步骤5.5,执行克隆操作;为了提高免疫系统对抗抗原的能力,优质抗体将会克隆,产生更多优质抗体来对抗抗原;对候选抗体进行克隆操作,克隆的规模与原抗体群规模一致,即将n个候选抗体,复制后达到An个抗体;

步骤5.6,执行抗体的交叉、变异操作;通过交叉运算,形成新的种群,并对新形成的种群进行变异运算;交叉操作通常可以在不影响收敛性的条件下,使抗体群可以向着好的方向变化,变异操作可以使种群丰富性得到提升,帮助算法跳出局部最优解;交叉操作的具体方法是:一个抗体与另一抗体执行交叉操作,即一个图结构与另一图结构发生边的交换操作;抗体执行交叉操作后需要仍保证两抗体的图结构不会出现环,若出现环则交叉操作失败;变异操作的具体方法是:抗体已一定概率发生突变而改变了原有的结构,抗体变异出现增边、减边、反向边的情况;

步骤5.7,执行克隆抑制操作;为避免种群的冗余,保持结构的多样性,将相同的抗体删除,直到抗体浓度为1即相同的抗体只保留一个;

步骤5.8,种群更新,选取当前最好的x个抗体,并将该抗体群加入到记忆库中,输出最优的抗体;循环迭代,直到迭代结束,输出最优抗体即为最优网络结构;

表3 采用不同算法从仿真fMRI数据中学习到的脑效应连接网络的结构

增加边减少边反向边相同边(实际边/标准边)PC614717/11CPC505617/11CCD604818/11FCI506517/11LINGAM6011017/11GES004711/11syn002911/11AIS0011011/11

表3中AIS代表本方法提供的方法,增加边数表明:该方法学习到的边而标准网络没有此边;减少边数表明:该方法未学习到的边而标准网络有此边;反向边数表明:该方法学习到的边在标准网络中也存在,但是方向相反;相同边表明:该方法学习到的边在标准网络中也存在,且方向相同;实际边表明:该方法学习到的图的总边数;标准边表明:该数据集的标准图的边数。

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于北京工业大学,未经北京工业大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/201510370320.0/1.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top