[发明专利]一种NiCo2S4/碳纳米管复合电极材料的制备方法有效
申请号: | 201510473332.6 | 申请日: | 2015-08-05 |
公开(公告)号: | CN105023769B | 公开(公告)日: | 2017-08-25 |
发明(设计)人: | 徐靖才;王攀峰;王新庆;彭晓领;洪波;金顶峰;金红晓;李静 | 申请(专利权)人: | 中国计量大学 |
主分类号: | H01G11/86 | 分类号: | H01G11/86;H01G11/30;H01G11/36 |
代理公司: | 暂无信息 | 代理人: | 暂无信息 |
地址: | 310018 浙江省杭*** | 国省代码: | 浙江;33 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 一种 nico sub 纳米 复合 电极 材料 制备 方法 | ||
技术领域
本发明涉及复合材料领域,具体涉及一种NiCo2S4纳米晶包覆碳纳米管电化学沉积复合的制备方法。
背景技术
近年来,超级电容器因其具有高功率密度、充电短时间和循环寿命长等诸多优点而受到广泛关注。电极材料是影响超级电容器性能的关键因素,以RuO2等贵金属氧化物因其赝电容原理有较大的比电容值,但昂贵的价格和毒性限制了其商业化应用。一些廉价金属硫化物代替贵金属作为超级电容器电极材料成为研究热点。NiCo2S4是一种典型的尖晶石结构复合金属硫化物,存在Co3+/Co2+及Ni3+/Ni2+氧化还原电对,可以获得较高的工作电压窗口和比电容值,同时因其廉价无毒表现为极具潜力的电极材料,因此不同结构、形态、尺寸的NiCo2S4的制备受到了众多研究人员的关注(如Chen等, Nanoscale, 2013,5(19),8879; Wan等, Crystengcomm, 2013,15(38),7649; Chen等, ACS Nano, 2014,8(9),9531; Zhang等, Nanoscale, 2014,6(16),9824; Pu等, ACS Sustain. Chem. Eng. 2014,2(4),809; Zhu等, J. Power. Sources. 2015,273,584)。然而NiCo2S4作为电极材料运用于超级电容器的时候,往往存在一个问题—材料的电阻过大,导电性偏低,导致超级电容器在大电流密度下充循环冲放电不够稳定。因而,需要以一定的方式将碳材料加入到NiCo2S4电极材料中,来提高电极材料的导电性,以达到增强其电化学性能的目的。如Peng等用原位法制备NiCo2S4/石墨烯复合材料(Chemical Communications, 2013,49(86),10178); Xiao等在碳纤维上生长NiCo2S4纳米管(Nano Letter, 2014,14(2), 831); Wu等一步合成了NiCo2S4/氧化石墨复合材料(J Mater. Chem. A, 2014,2(48),20990); Ding等制备了NiCo2S4/碳布复合材料(RSC Advances, 2015,5(60),48631)等。
碳纳米管(CNTs)具有特殊的一维中空的纳米结构,具有优良的导电性能。但CNTs单独作为超级电容器电极材料比电容值过低,一般只有40F/g。将碳纳米管与碳纳米管组成复合电极材料,两者可以取长补短,有望得到具有高比电容、高导电率、循环充放电稳定的超级电容器电极材料。
NiCo2S4与石墨烯、氧化石墨、碳纤维、碳布等碳材料的复合运用于超级电容器领域已有报道,但未见到NiCo2S4与碳纳米管形成复合电极材料应用于超级电容器领域的报道。
发明内容
本发明的目的是提供一种NiCo2S4/碳纳米管复合电极材料的制备方法,该方法制备得到复合电极材料NiCo2S4与碳纳米管的结合力大,可以提高超级电容器电极材料的比电容和循环充放电稳定性。
为了实现上述目的,本发明提供一种NiCo2S4/碳纳米管复合电极材料的制备方法,其特征在于,具体包括以下步骤。
一、制备碳纳米管/泡沫镍基体:首先将经稀盐酸、丙酮、无水乙醇超声清洗过的泡沫镍剪裁为1*2cm;然后按质量分数比为碳纳米管:聚四氟乙烯=95:5称取样品溶于无水乙醇中搅拌成浆状后均匀涂覆在1*2cm泡沫镍的表面,80℃真空烘干后得到碳纳米管/泡沫镍基体;其中碳纳米管涂覆在泡沫镍上的质量为2~4mg/cm3。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于中国计量大学,未经中国计量大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201510473332.6/2.html,转载请声明来源钻瓜专利网。
- 一种基于NiCo<sub>2</sub>S<sub>4</sub>及其复合材料的水系不对称型超级电容器
- 用作超级电容器电极的NiCo2O4@NiCo2O4纳米材料及其制备方法
- NiCo<sub>2</sub>S<sub>x</sub>和NiCo<sub>2</sub>O<sub>4</sub>在导电基底上的原位制备及其在储能设备中的应用
- 金属Ag纳米颗粒沉积NiCo-LDH复合光催化剂的制备及其应用
- 一种g-C<sub>3</sub>N<sub>4</sub>@NiCo<sub>2</sub>O<sub>4</sub>核壳结构的制备方法
- 一种BiVO<sub>4</sub>/NiCo LDHs多孔纤维及其制备方法和应用
- 一种NiCo/TiO<base:Sub>2
- 三维多孔结构C@NiCo<base:Sub>2
- 一种NiCo<base:Sub>2
- 一种片状Pt/NiCo合金纳米柔性电极材料及其在无酶葡萄糖传感器上的应用
- 一种Nd<sub>2</sub>O<sub>3</sub>-Yb<sub>2</sub>O<sub>3</sub>改性的La<sub>2</sub>Zr<sub>2</sub>O<sub>7</sub>-(Zr<sub>0.92</sub>Y<sub>0.08</sub>)O<sub>1.96</sub>复相热障涂层材料
- 无铅[(Na<sub>0.57</sub>K<sub>0.43</sub>)<sub>0.94</sub>Li<sub>0.06</sub>][(Nb<sub>0.94</sub>Sb<sub>0.06</sub>)<sub>0.95</sub>Ta<sub>0.05</sub>]O<sub>3</sub>纳米管及其制备方法
- 磁性材料HN(C<sub>2</sub>H<sub>5</sub>)<sub>3</sub>·[Co<sub>4</sub>Na<sub>3</sub>(heb)<sub>6</sub>(N<sub>3</sub>)<sub>6</sub>]及合成方法
- 磁性材料[Co<sub>2</sub>Na<sub>2</sub>(hmb)<sub>4</sub>(N<sub>3</sub>)<sub>2</sub>(CH<sub>3</sub>CN)<sub>2</sub>]·(CH<sub>3</sub>CN)<sub>2</sub> 及合成方法
- 一种Bi<sub>0.90</sub>Er<sub>0.10</sub>Fe<sub>0.96</sub>Co<sub>0.02</sub>Mn<sub>0.02</sub>O<sub>3</sub>/Mn<sub>1-x</sub>Co<sub>x</sub>Fe<sub>2</sub>O<sub>4</sub> 复合膜及其制备方法
- Bi<sub>2</sub>O<sub>3</sub>-TeO<sub>2</sub>-SiO<sub>2</sub>-WO<sub>3</sub>系玻璃
- 荧光材料[Cu<sub>2</sub>Na<sub>2</sub>(mtyp)<sub>2</sub>(CH<sub>3</sub>COO)<sub>2</sub>(H<sub>2</sub>O)<sub>3</sub>]<sub>n</sub>及合成方法
- 一种(Y<sub>1</sub>-<sub>x</sub>Ln<sub>x</sub>)<sub>2</sub>(MoO<sub>4</sub>)<sub>3</sub>薄膜的直接制备方法
- 荧光材料(CH<sub>2</sub>NH<sub>3</sub>)<sub>2</sub>ZnI<sub>4</sub>
- Li<sub>1.2</sub>Ni<sub>0.13</sub>Co<sub>0.13</sub>Mn<sub>0.54</sub>O<sub>2</sub>/Al<sub>2</sub>O<sub>3</sub>复合材料的制备方法