[发明专利]一种基于CUDA技术对栅格化数据进行抽阶的方法有效
申请号: | 201510566712.4 | 申请日: | 2015-09-09 |
公开(公告)号: | CN105183562B | 公开(公告)日: | 2018-09-11 |
发明(设计)人: | 陆敏婷 | 申请(专利权)人: | 合肥芯碁微电子装备有限公司 |
主分类号: | G06F9/50 | 分类号: | G06F9/50;G06T1/20 |
代理公司: | 合肥天明专利事务所(普通合伙) 34115 | 代理人: | 张祥骞;奚华保 |
地址: | 230088 安徽省合肥市高新区*** | 国省代码: | 安徽;34 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 一种 基于 cuda 技术 栅格 数据 进行 方法 | ||
本发明涉及一种基于CUDA技术对栅格化数据进行抽阶的方法,与现有技术相比解决了栅格化数据抽阶效率较低的缺陷。本发明包括以下步骤:CPU分配显存和计算资源,CPU根据进行抽阶数据的规模,结合当前GPU可供使用的硬件资源,计算出最优的GPU线程分配方式;根据GPU线程分配方式申请显存空间,将输入数据由内存拷贝到显存中;GPU在每一个线程Thread上进行核函数计算,对每个字节进行抽阶操作;完成抽阶过程。本发明通过并行化提高了计算效率,增加了直写式光刻机的产能,同时降低了数据规模,减少了对计算能力及传输带宽的依赖,降低了成本。
技术领域
本发明涉及直写式光刻机数据处理技术,具体来说是一种基于CUDA技术对栅格化数据进行抽阶的方法。
背景技术
CUDA是NVIDIA公司2007年提出的支持GPU进行通用计算的编程模型和开发环境,CUDA编程的思想是用海量的线程来开发程序中的并行性,海量线程以层次化的方式组织,单个的线程被映射到标量核SP上执行,一组线程被组织成一个线程块(Block)被映射到一个流处理单位SM上执行,最后由线程块组成的线程栅格(Grid)映射到一个GPGPU(GPU)上执行。由于GPU具有远超CPU的计算核心数以及海量的并行计算资源,适合进行计算密集型、高度并行化的计算任务。同时,由于GPU的价格远远低于同等性能的并行计算系统,由CPU和GPGPU(GPU)组成的异构系统已经越来越广的应用到生物医学、流体力学等诸多工程应用领域。
直写式光刻机的数据处理过程是将用户提供的矢量数据,转化为图形发生器能接受的图像数据,数据处理过程中涉及到数据的分析、计算和传输。目前实际应用处理得到的栅格化数据中,一个像素用一个字节来表示(8阶灰度),而下位机只需要其中的1、2、4位即可满足显示的灰度要求,因此如果能够针对栅格化数据进行抽阶处理,去掉其中冗余的数据,提取出有效的灰度值,即可降低了数据规模,降低传输链路带宽。如针对同样一幅图,抽阶后的数据量变少了,传输这些数据要求的时间不变,所以需要的带宽(传输速率)降低了。实际应用中选择成本低,速度慢的传输链路也可满足传输时间要求,则相当于降低了生产成本。
对栅格化数据进行抽阶处理是根据实际需要来处理,如针对4位的灰度要求,在对数据栅格化时便可以将需要的4位排列在8位字节(一个像素)的前4位,在做抽阶工作时,直接抽取0-3位即可;或针对2位的灰度要求,在数据栅格化时将需要的2位排在8位字节的第2位和第3位,在做抽阶工作时,直接抽取1-2位即可。但是目前栅格化数据的数据量过于庞大,导致抽阶工作较慢,抽阶工作的分析、计算和传输均比较耗时,难以满足产能要求,如何利用CUDA技术的特点,实现栅格化数据抽阶的多线程并行处理已经成为急需解决的技术问题。
发明内容
本发明的目的是为了解决现有技术中栅格化数据抽阶效率较低的缺陷,提供一种基于CUDA技术对栅格化数据进行抽阶的方法来解决上述问题。
为了实现上述目的,本发明的技术方案如下:
一种基于CUDA技术对栅格化数据进行抽阶的方法,包括以下步骤:
CPU分配显存和计算资源,CPU根据进行抽阶数据的规模,结合当前GPU可供使用的硬件资源,计算出最优的GPU线程分配方式;
根据GPU线程分配方式申请显存空间,将输入数据由内存拷贝到显存中;
GPU在每一个线程Thread上进行核函数计算,对每个字节进行抽阶操作;
待所有线程Thread的核函数计算完后,将显存中的结构数据拷贝回内存,此结构数据为抽阶后的栅格化数据,完成抽阶过程。
所述的CPU分配显存和计算资源包括以下步骤:
输入栅格化处理后的二维位图像素阵列,其宽度定义为width,高度定义为height;
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于合肥芯碁微电子装备有限公司,未经合肥芯碁微电子装备有限公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201510566712.4/2.html,转载请声明来源钻瓜专利网。