[发明专利]一种基于非监督学习的图像质量评价方法有效

专利信息
申请号: 201510613840.X 申请日: 2015-09-23
公开(公告)号: CN105243385B 公开(公告)日: 2018-11-09
发明(设计)人: 邵枫;姜求平;李福翠 申请(专利权)人: 宁波大学
主分类号: G06K9/46 分类号: G06K9/46;G06K9/62
代理公司: 宁波奥圣专利代理事务所(普通合伙) 33226 代理人: 周珏
地址: 315211 浙*** 国省代码: 浙江;33
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 一种 基于 监督 学习 图像 质量 评价 方法
【说明书】:

发明公开了一种基于非监督学习的图像质量评价方法,其在训练阶段,根据每个子块的HOG特征统计直方图及所有像素点在不同中心频率和不同方向因子下的振幅的均值,获取图像特征矢量,并根据每个子块的客观评价预测值获取图像质量矢量;接着根据每个子块的图像特征矢量和图像质量矢量,通过非监督学习方式分别构造图像特征字典表和图像质量字典表;在测试阶段,根据图像特征字典表通过优化得到测试图像中的每个子块的稀疏系数矩阵,并通过稀疏系数矩阵和图像质量字典表得到图像质量客观评价预测值,其与主观评价值保持了较好的一致性,且不需要再计算图像特征字典表和图像质量字典表,降低了计算复杂度,同时无需预知各评价图像的主观评价值。

技术领域

本发明涉及一种图像质量评价方法,尤其是涉及一种基于非监督学习的图像质量评价方法。

背景技术

随着图像编码和显示等技术的迅速发展,图像质量评价研究已经成为其中非常重要的环节。图像质量客观评价方法研究的目标是与主观评价结果尽可能保持一致,从而摆脱耗时而枯燥的图像质量主观评价方法,其能够利用计算机自动地评价图像质量。根据对原始图像的参考和依赖程度,图像质量客观评价方法可以分为三大类:全参考(FullReference,FR)图像质量评价方法、部分参考(Reduced Reference,RR)图像质量评价方法和无参考(No Reference,NR)图像质量评价方法。

无参考图像质量评价方法由于无需任何参考图像信息,具有较高的灵活性,因此受到了越来越广泛的关注。目前,已有方法是通过机器学习来预测评价模型,但其计算复杂度较高,并且训练模型需要预知各评价图像的主观评价值,并不适用于实际的应用场合,存在一定的局限性。稀疏表示将信号在已知的函数集上进行分解,力求在变换域上用尽量少的基函数来对原始信号进行逼近。稀疏表示的一个关键问题就是如何有效地构造字典来表征图像的本质特征。因此,如何构造能反映图像特征的字典,如何构造能反映图像质量的字典,如果在图像特征和图像质量的字典之间建立联系,都是在无参考图像质量评价研究中需要重点解决的技术问题。

发明内容

本发明所要解决的技术问题是提供一种基于非监督学习的图像质量评价方法,其能够有效地提高客观评价结果与主观感知之间的相关性,且计算复杂度低,无需预知各评价图像的主观评价值。

本发明解决上述技术问题所采用的技术方案为:一种基于非监督学习的图像质量评价方法,其特征在于包括训练阶段和测试阶段两个过程,所述的训练阶段过程的具体步骤如下:

①-1、选取N幅原始的无失真图像;然后将选取的N幅原始的无失真图像和每幅原始的无失真图像对应的L个失真强度的失真图像构成训练图像集,记为其中,N>1,L>1,表示中的第u幅原始的无失真图像,表示中的第u幅原始的无失真图像对应的第v个失真强度的失真图像;

①-2、通过采用Gabor滤波器获取中的每幅失真图像中的每个像素点在不同中心频率和不同方向因子下的频率响应,再获取中的每幅失真图像中的每个像素点在不同中心频率和不同方向因子下的振幅,将中坐标位置为(x,y)的像素点在中心频率为ω和方向因子为θ下的振幅记为其中,(x,y)表示原始的无失真图像及其对应的失真图像中的像素点的坐标位置,1≤x≤W,1≤y≤H,W和H对应表示原始的无失真图像及其对应的失真图像的宽度和高度,ω表示所采用的Gabor滤波器的中心频率,ω∈Ωω,θ表示所采用的Gabor滤波器的方向因子,θ∈Ωθ

①-3、将中的每幅失真图像划分成个互不重叠的尺寸大小为8×8的子块;然后将中的所有失真图像中的所有子块构成一个失真子块集合,记为{Rk|1≤k≤M},其中,Rk表示{Rk|1≤k≤M}中的第k个子块;

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于宁波大学,未经宁波大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/201510613840.X/2.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top