[发明专利]巨型脂质体制备过程的多参数优化方法在审

专利信息
申请号: 201510650847.9 申请日: 2015-10-10
公开(公告)号: CN105138865A 公开(公告)日: 2015-12-09
发明(设计)人: 利节;陈国荣;王振宇;高敏;李莉;赖军辉;李忠 申请(专利权)人: 重庆科技学院
主分类号: G06F19/12 分类号: G06F19/12
代理公司: 重庆为信知识产权代理事务所(普通合伙) 50216 代理人: 陈千
地址: 400023 重*** 国省代码: 重庆;85
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 巨型 脂质体 制备 过程 参数 优化 方法
【说明书】:

技术领域

发明涉及脂质体制备技术领域,具体涉及一种巨型脂质体制备过程的多参数优化方法。

背景技术

脂质体是一种人工膜,在水中磷脂分子亲水头部插入水中,脂质体疏水尾部伸向空气,搅动后形成双层脂分子的球形脂质体,直径25-1000nm不等。脂质体可用于转基因,或制备的药物,利用脂质体可以和细胞膜融合的特点,将药物送入细胞内部,具有重要的经济和社会意义。因此,脂质体的制作近年来得到了大量关注。巨型脂质体是粒径大于1μm,电形成法是现有较好的制备巨型脂质体的方法。电形成法通过电场作用实现制备,在制备过程中影响巨型脂质体数量的参数较多,如何确定各参数的最优值以获得巨型脂质体数量最多是目前一个研究热点。

发明内容

本申请通过提供一种巨型脂质体制备过程的多参数优化方法,运用反馈神经网络算法(BP)对已有试验数据进行学习与训练,从而预测在已有参数限制下的最高巨型脂质体产量,根据预测的最高巨型脂质体产量,利用遗传算法(GA)寻找各参数的最优值,以获得巨型脂质体产量最高,解决人工大量试验寻找最高巨型脂质体产量的参数值难度大、耗时长、准确性差等技术问题。

为解决上述技术问题,本申请采用以下技术方案予以实现:

一种巨型脂质体制备过程的多参数优化方法,其关键在于,包括以下步骤:

S1:运用反馈神经网络算法对已获得的影响巨型脂质体制备的参数值及其对应的巨型脂质体产量值数据进行学习与训练,预测巨型脂质体产量的最高值,其中,输入数据为影响巨型脂质体制备的参数值,输出数据为巨型脂质体产量值;

S2:根据预测的巨型脂质体产量的最高值,利用遗传算法寻找影响巨型脂质体制备的参数值的最优值,其中,将反馈神经网络的权值和阈值组成实数数组,作为遗传算法的一个染色体,将反馈神经网络的输出值与期望值的均方误差函数作为遗传算法的适应度函数。

进一步地,步骤S1具体包括:

S11:构建反馈神经网络;

S12:网络初始化;

S13:网络训练学习;

S14:判断训练是否完成,如果是,则进入步骤S15,否则,跳转步骤S13;

S15:测试数据集;

S16:形成预测模型。

进一步地,步骤S2具体包括:

S21:产生初始种群;

S22:计算适应度,其中将反馈神经网络的输出值与期望值的均方误差函数作为遗传算法的适应度函数;

S23:选择;

S24:交叉;

S25:变异;

S26:判断是否满足优化要求,如果是,则结束遗传算法,否则,跳转到步骤S22。

作为一种优选的技术方案,影响巨型脂质体制备的参数包括脂质比例PC:Chol、PC浓度、Chol浓度、脂质体积、缓冲液Suc浓度、缓冲液NaCl浓度、电压、频率以及持续时间,其中PC为磷脂酰胆碱,Chol为胆固醇,Suc为蔗糖,NaCl为氯化钠。

与现有技术相比,本申请提供的技术方案,具有的技术效果或优点是:结合神经网络系统拟合和遗传算法寻优的特点,大大提高了巨型脂质体制备的效率和准确性。

附图说明

图1为本发明的多参数寻优算法流程图;

图2为BP神经网络预测模型适应度值变化曲线图;

图3为多参数寻优算法寻优所得最优参数值曲线图;

图4为多参数寻优算法寻优所得最优参数值曲线图;

图5为多参数寻优算法预测的巨型脂质体产量曲线图。

具体实施方式

本申请实施例通过提供一种巨型脂质体制备过程的多参数优化方法,运用反馈神经网络算法(BP)对已有试验数据进行学习与训练,从而预测在已有参数限制下的最高巨型脂质体产量,根据预测的最高巨型脂质体产量,利用遗传算法(GA)寻找各参数的最优值,以获得巨型脂质体产量最高,解决人工大量试验寻找最高巨型脂质体产量的参数值难度大、耗时长、准确性差等技术问题。

为了更好的理解上述技术方案,下面将结合说明书附图以及具体的实施方式,对上述技术方案进行详细的说明。

实施例

一种巨型脂质体制备过程的多参数优化方法,包括以下步骤:

S1:运用反馈神经网络算法对已获得的影响巨型脂质体制备的参数值及其对应的巨型脂质体产量值数据进行学习与训练,预测巨型脂质体产量的最高值,其中,输入数据为影响巨型脂质体制备的参数值,输出数据为巨型脂质体产量值;

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于重庆科技学院,未经重庆科技学院许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/201510650847.9/2.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top