[发明专利]光学成像系统有效
申请号: | 201510730730.1 | 申请日: | 2015-11-02 |
公开(公告)号: | CN105572842B | 公开(公告)日: | 2018-11-09 |
发明(设计)人: | 唐乃元;张永明 | 申请(专利权)人: | 先进光电科技股份有限公司 |
主分类号: | G02B13/00 | 分类号: | G02B13/00;G02B13/18 |
代理公司: | 北京龙双利达知识产权代理有限公司 11329 | 代理人: | 肖鹂;王君 |
地址: | 中国台湾中部科学工业*** | 国省代码: | 中国台湾;71 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 光学 成像 系统 | ||
一种光学成像系统,由物侧至像侧依次包括第一透镜、第二透镜、第三透镜、第四透镜、第五透镜以及第六透镜。第一透镜具有屈光力,其物侧面可为凸面。第二透镜至第五透镜具有屈光力,前述各透镜的两表面均为非球面。第六透镜可具有负屈光力,其物侧面为凹面,其两表面均为非球面,其中第六透镜的至少一个表面具有反曲点。光学成像系统中具屈光力的透镜为第一透镜至第六透镜。当满足特定条件时,可具备更佳的光路调节能力,以提高成像质量。
技术领域
本发明涉及一种光学成像系统,且特别涉及一种应用于电子产品上的小型化光学成像系统。
背景技术
近年来,随着具有摄影功能的便携式电子产品的兴起,光学系统的需求日渐提高。一般光学系统的感光元件不外乎是感光耦合元件(Charge Coupled Device;CCD)或互补性氧化金属半导体元件(Complementary Metal-Oxide Semiconductor Sensor;CMOSSensor)两种,且随着半导体制作工艺技术的精进,使得感光元件的像素尺寸缩小,光学系统逐渐往高像素领域发展,因此对成像质量的要求也日益增加。
传统搭载于便携式装置上的光学系统,多采用四片或五片式透镜结构为主,然而由于便携式装置不断朝提高像素并且终端消费者对广视角的需求例如前置镜头的自拍功能,现有的光学成像系统已无法满足更高阶的摄影要求。
发明内容
因此,本发明实施例的目的在于,提供一种技术,能够有效增加光学成像系统的视角,并进一步提高成像的质量。
本发明实施例相关的透镜参数的用语与其符号详列如下,作为后续描述的参考:
与长度或高度有关的透镜参数
光学成像系统的成像高度以HOI表示;光学成像系统的高度以HOS表示;光学成像系统的第一透镜物侧面至第六透镜像侧面间的距离以InTL表示;光学成像系统的固定光阑(光圈)至成像面间的距离以InS表示;光学成像系统的第一透镜与第二透镜间的距离以In12表示(例示);光学成像系统的第一透镜在光轴上的厚度以TP1表示(例示)。
与材料有关的透镜参数
光学成像系统的第一透镜的色散系数以NA1表示(例示);第一透镜的折射率以Nd1表示(例示)。
与视角有关的透镜参数
视角以AF表示;视角的一半以HAF表示;主光线角度以MRA表示。
与出入瞳有关的透镜参数
光学成像系统的入射瞳直径以HEP表示。
与透镜面形深度有关的参数
第六透镜物侧面在光轴上的交点至第六透镜物侧面的最大有效径位置在光轴的水平位移距离以InRS61表示(最大有效径深度);第六透镜像侧面在光轴上的交点至第六透镜像侧面的最大有效径位置在光轴的水平位移距离以InRS62表示(最大有效径深度)。其他透镜物侧面或像侧面的最大有效径的深度(沉陷量)表示方式比照前述。
与透镜面型有关的参数
临界点C指特定透镜表面上,除与光轴的交点外,与光轴相垂直的切面相切的点。承上,例如第五透镜物侧面的临界点C51与光轴的垂直距离为HVT51(例示),第五透镜像侧面的临界点C52与光轴的垂直距离为HVT52(例示),第六透镜物侧面的临界点C61与光轴的垂直距离为HVT61(例示),第六透镜像侧面的临界点C62与光轴的垂直距离为HVT62(例示)。其他透镜物侧面或像侧面上的临界点及其与光轴的垂直距离的表示方式比照前述。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于先进光电科技股份有限公司,未经先进光电科技股份有限公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201510730730.1/2.html,转载请声明来源钻瓜专利网。
- 上一篇:一种基于不锈钢表面电化学合成聚苯胺对电极的制备方法
- 下一篇:源极驱动装置