[发明专利]人脸模型矩阵训练方法和装置有效

专利信息
申请号: 201510836591.0 申请日: 2015-11-26
公开(公告)号: CN106803054B 公开(公告)日: 2019-04-23
发明(设计)人: 丁守鸿;李季檩;汪铖杰;黄飞跃;吴永坚;谭国富 申请(专利权)人: 腾讯科技(深圳)有限公司
主分类号: G06K9/00 分类号: G06K9/00
代理公司: 北京三高永信知识产权代理有限责任公司 11138 代理人: 刘映东
地址: 518000 广东省深圳*** 国省代码: 广东;44
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 模型 矩阵 训练 方法 装置
【说明书】:

发明公开了一种人脸模型矩阵训练方法和装置,属于计算机技术领域。所述方法包括:获取人脸图像库,所述人脸图像库包括k组人脸图像,每组人脸图像包括至少一个人的至少一张人脸图像,k>2;对所述k组人脸图像中的每一组人脸图像分别进行解析,根据解析结果计算第一矩阵和第二矩阵;所述第一矩阵为每组人脸图像的人脸特征的组内协方差矩阵,所述第二矩阵为所述k组人脸图像的人脸特征的组间协方差矩阵;根据所述第一矩阵和所述第二矩阵,训练人脸模型矩阵。避免了现有技术中终端同时加载人脸图像库中的所有人脸图像至内存时占用内存较大的问题,达到了可以每次只加载一个分组中的人脸图像至内存,进而降低训练过程中所需占用的内存的效果。

技术领域

本发明涉及计算机技术领域,特别涉及一种人脸模型矩阵训练方法和装置。

背景技术

人脸识别技术通常包括两个步骤。第一,对目标人脸图像进行特征提取;第二,对提取到的特征与参考人脸图像中的特征进行相似度计算。

在计算相似度之前终端需要先根据人脸图像库中的各个人脸图像计算人脸模型矩阵,进而根据计算到的人脸模型矩阵计算提取到的特征与参考人脸图像中的特征的相似度。现有技术中,终端需要同时对人脸图像库中的所有人脸图像进行计算,并根据计算结果训练得到人脸模型矩阵。

发明人在实现本发明的过程中,发现现有技术至少存在以下问题:终端需要同时加载人脸图像库中的所有人脸图像至内存,耗用了大量的内存空间。

发明内容

为了解决现有技术中存在的问题,本发明实施例提供了一种人脸模型矩阵训练方法和装置。所述技术方案如下:

第一方面,提供了一种人脸模型矩阵训练方法,包括:

获取人脸图像库,所述人脸图像库包括k组人脸图像,每组人脸图像包括至少一个人的至少一张人脸图像,k>2;

对所述k组人脸图像中的每一组人脸图像分别进行解析,根据解析结果计算第一矩阵和第二矩阵,所述第二矩阵为所述k组人脸图像的人脸特征的组间协方差矩阵;

根据所述第一矩阵和所述第二矩阵,训练人脸模型矩阵。

第二方面,提供了一种人脸模型矩阵训练装置,包括:

图像获取模块,用于获取人脸图像库,所述人脸图像库包括k组人脸图像,每组人脸图像包括至少一个人的至少一张人脸图像,k>2;

矩阵计算模块,用于对所述k组人脸图像中的每一组人脸图像分别进行解析,根据解析结果计算第一矩阵和第二矩阵;所述第一矩阵为每组人脸图像的人脸特征的组内协方差矩阵,所述第二矩阵为所述k组人脸图像的人脸特征的组间协方差矩阵;

矩阵训练模块,用于根据所述矩阵计算模块计算得到的所述第一矩阵和所述第二矩阵,训练人脸模型矩阵。

本发明实施例提供的技术方案的有益效果是:

通过将人脸图像库中的人脸图像分成k个分组,每次只加载一个分组中的人脸图像至内存并进行解析,之后根据各个解析结果计算第一矩阵和第二矩阵,并根据第一矩阵和第二矩阵训练人脸模型矩阵;避免了现有技术中终端同时加载人脸图像库中的所有人脸图像至内存时占用内存较大的问题,达到了可以每次只加载一个分组中的人脸图像至内存,进而降低训练过程中所需占用的内存的效果。同时,由于每次只需要对一个分组中的人脸图像进行解析,这也一定程度上降低了终端的计算复杂度。

附图说明

为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。

图1是本发明各个实施例提供的人脸模型矩阵训练方法所涉及的服务器的框图;

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于腾讯科技(深圳)有限公司,未经腾讯科技(深圳)有限公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/201510836591.0/2.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top