[发明专利]一种音频关键词模板的筛选和优化方法有效

专利信息
申请号: 201510882805.8 申请日: 2015-12-03
公开(公告)号: CN106847259B 公开(公告)日: 2020-04-03
发明(设计)人: 徐及;张舸;潘接林;颜永红 申请(专利权)人: 中国科学院声学研究所;北京中科信利技术有限公司
主分类号: G10L15/02 分类号: G10L15/02;G10L15/26
代理公司: 北京方安思达知识产权代理有限公司 11472 代理人: 王宇杨;刘振
地址: 100190 *** 国省代码: 北京;11
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 一种 音频 关键词 模板 筛选 优化 方法
【说明书】:

发明提供一种音频关键词模板的筛选和优化方法,所述方法包括:步骤1)对每个音频关键词模板样本进行特征提取,将所提取的特征通过一个深层神经网络,计算在一个给定音素集上全部音素的后验概率;步骤2)计算模板的后验概率稳定性分数、发音可靠性分数和邻域相似性分数;步骤3)计算每个音频关键词模板的上述三种分数的加权平均值,记为平均分数;步骤4)按照平均分数从大到小的顺序进行排序,选取前L个音频关键词模板作为代表性发音模板;步骤5)对每个代表性发音模板进行处理,调整其发音序列上每一帧的各发音单元的后验概率,并最小化模板的邻域相似性分数;生成优化的L个音频检索词模板。

技术领域

本发明属于语音识别领域,具体地说,涉及一种音频关键词模板的筛选和优化方法。

背景技术

关键词检索任务是快速地从大规模、多样性的语音数据中找到给定的关键词所在的位置。在基于语音片段的关键词检索任务中,待检索关键词以一组音频片段模板的形式给出。这些片段通常来自不同的说话人或提取自不同的上下文,因此在包含的信息上有所区别。为了获得具有较好的泛化性的检索结果,即为了能够处理待检索语音中出现的来自不同说话人或具有不同上下文的关键词,需要充分利用某个关键词的尽可能多的音频片段。传统的做法是对属于单个关键词的所有模板进行平均,获得单一模板,将其作为该关键词的模板进行检索操作。

然而在实际的任务中,关键词的不同音频片段往往在质量上有很大的差异,这些差异可能来自噪声、信道不匹配、标记错误等因素。这样的音频片段可能不具有足够的区分性,因此如果将其直接引入关键词检索过程,可能导致系统的检索性能降低。

发明内容

本发明的目的在于克服目前语音关键词模板匹配的检索系统中存在的上述问题,提出一种音频关键词模板的筛选和优化方法,该方法制定了一种衡量模板质量的标准,并利用该标准对选取的音频关键词模板进行筛选,得到代表性模板,最后对这些代表性模板进行优化,获取到最终的质量更高的音频关键词模板;用该方法得到的音频关键词模板进行音频检索时,能够提高检索的性能。

为了实现上述目的,本发明提供了一种音频关键词模板的筛选和优化方法,所述方法包括:

步骤1)对每个音频关键词模板样本进行特征提取,将所提取的特征通过一个深层神经网络,计算在一个给定音素集上全部音素的后验概率;

步骤2)基于步骤1)生成的后验概率,计算模板的后验概率稳定性分数、发音可靠性分数和邻域相似性分数;

步骤3)计算每个音频关键词模板的上述三种分数的加权平均值,记为平均分数;

步骤4)按照平均分数从大到小的顺序进行排序,选取前L个音频关键词模板作为代表性发音模板;

步骤5)对每个代表性发音模板进行处理,调整其发音序列上每一帧的各发音单元的后验概率,并最小化模板的邻域相似性分数;生成优化的L个音频检索词模板。

上述技术方案中,所述步骤1)的音素集为采用基于国际音标系统的通用音素集或采用目标语言的特定音素集。

上述技术方案中,所述步骤1)的特征提取中所涉及的特征为语音识别特征;所述语音识别特征为梅尔频率倒谱系数或感知线性预测。

上述技术方案中,所述步骤5)具体包括:

步骤501)选取一条代表性发音模板为当前模板q;设置迭代次数初始值N=0;

步骤502)计算当前模板q和所有音频关键词模板的动态时间规整距离,选取距离最小的K个模板,组成集合QN

步骤503)利用步骤502)选取的K个模板计算当前模板q的LS分数;设置初始学习率λ=λ0

步骤504)对当前模板q的第i帧的声学单元j,对这一帧的后验概率做变换:

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于中国科学院声学研究所;北京中科信利技术有限公司,未经中国科学院声学研究所;北京中科信利技术有限公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/201510882805.8/2.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top