[发明专利]基于改进Krawtchouk矩的SAR图像目标特征提取方法有效

专利信息
申请号: 201510883597.3 申请日: 2015-12-03
公开(公告)号: CN106845489B 公开(公告)日: 2020-07-03
发明(设计)人: 陶飞翔;贺治华;罗旌胜 申请(专利权)人: 中国航空工业集团公司雷华电子技术研究所
主分类号: G06K9/38 分类号: G06K9/38;G06K9/34;G06K9/46;G06K9/62
代理公司: 中国航空专利中心 11008 代理人: 郭平
地址: 214063 *** 国省代码: 江苏;32
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 基于 改进 krawtchouk sar 图像 目标 特征 提取 方法
【说明书】:

基于改进Krawtchouk矩的SAR图像目标特征提取方法,涉及图像特征提取技术,属于SAR目标自动识别技术领域。本发明针对SAR图像的方位敏感性和平移敏感性给SAR目标识别带来的干扰,提出一种基于改进Krawtchouk矩的SAR图像目标特征提取方法。在有效抑制噪声的情况下,有效克服了SAR图像对目标方位的敏感性,减少计算量的同时能有效地对目标进行识别。

1.所属技术领域

基于改进Krawtchouk矩的SAR图像目标特征提取方法,涉及图像特征提取技术,属于SAR目标自动识别技术领域。

2.背景技术

在合成孔径雷达(Synthetic Aperture Radar,SAR)图像自动目标识别当过程中,有效地处理SAR图像并提取能反映目标本质属性的特征是SAR目标识别的关键技术之一。

SAR图像不像一般的光学图像能较完整地描述目标的整体形状,而是表现为稀疏的散射中心分布,且对成像的方位敏感,即同一目标在不同方位角下,SAR图像间存在较大的差异,故而需要有效地提取目标的特征。特征提取过程是去除冗余信息的过程,具有提高识别精度、减少运算量和提高运算速度的作用,良好的特征应具有可分性、稳定性和独立性等特点。而矩是一种非常重要的表示目标总体形状的特征量,二维图像的几个关键特征均直接与矩有关,如目标的大小、质心和旋转情况等等。由于不变矩概念清晰、识别率稳定,对具有平移、旋转和缩放变化的目标有良好的不变性及抗干扰性,能有效地反映目标的本质特征。Krawtchouk矩由于具有计算时不需要进行坐标转换,没有离散误差,且能提取任意局部特征等良好性能,所以Krawtchouk矩越来越广泛地被应用于信号特征提取等领域。尽管Krawtchouk不变矩具有平移、尺度以及180度以内的旋转不变性,但对于具有翻转行为或者旋转角度大于180度的图像,利用Krawtchouk不变矩提取特征时并不具备不变性。

针对SAR图像的方位敏感性和平移敏感性,引入翻转因子和旋转因子,提取具有平移、全方位旋转、缩放等不变性的改进Krawtchouk矩特征作为特征向量,采用支持向量机分类方法进行分类,可为SAR自动目标识别提供技术支持。

3.发明创造的目的

针对SAR图像的方位敏感性和平移敏感性给SAR目标识别带来的干扰,提出一种基于改进Krawtchouk矩的SAR图像目标特征提取方法。在有效抑制噪声的情况下,有效克服了SAR图像对目标方位的敏感性,减少计算量的同时能有效地对目标进行识别。

4.技术方案

SAR目标识别分类可大致分为三个步骤:预处理、特征提取和分类。其中,如何提取图像特征是目标分类识别的前提和关键,只有当选择的特征具有良好的类内相似性和类间差异性时,才可能利用图像特征对目标进行精确的分类和目标识别。主要过程如下:

(1)对SAR目标的切片图像进行中值滤波。

(2)采用一维最大熵阈值分割法对切片图像进行分割,得到目标二值图像和背景图像。

(3)对目标二值图像利用改进的Krawtchouk矩方法进行特征提取。

引入翻转因子和旋转因子,改进Krawtchouk不变矩构建方法,使该矩不但具备基本Krawtchouk不变矩的特性,还具备对称翻转以及全方位的旋转不变性。

改进Krawtchouk矩特征提取的主要步骤为:

Step1:根据式(1)确定图像的质心

其中,f(x,y)为坐标(x,y)位置的灰度值,其值为0或者1,i取0或1,j也取0或1,N为图像的行数。

Step2:图像的中心距uij可由式(2)计算,

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于中国航空工业集团公司雷华电子技术研究所,未经中国航空工业集团公司雷华电子技术研究所许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/201510883597.3/2.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top