[发明专利]人脸聚类方法及装置有效
申请号: | 201510970887.1 | 申请日: | 2015-12-22 |
公开(公告)号: | CN105608430B | 公开(公告)日: | 2019-04-26 |
发明(设计)人: | 陈志军;李明浩;侯文迪 | 申请(专利权)人: | 小米科技有限责任公司 |
主分类号: | G06K9/00 | 分类号: | G06K9/00 |
代理公司: | 北京三高永信知识产权代理有限责任公司 11138 | 代理人: | 鞠永善 |
地址: | 100085 北京市海淀区清*** | 国省代码: | 北京;11 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 人脸聚类 方法 装置 | ||
本公开揭示了一种人脸聚类方法及装置,属于人脸识别领域。该人脸聚类方法包括:获取第一照片类和第二照片类;对第一照片类中的人脸照片进行聚类得到至少一个照片子类;将至少一个照片子类中的一个照片子类确定为正确人脸子类;计算正确人脸子类与第二照片类之间的距离;若距离小于阈值,则将第一照片类和第二照片类聚类至同一个照片类;解决了若第二照片类中存在与第一照片类中错误人脸相对应的其他人脸照片,则有可能错误地将第一照片类与第二照片类聚类至同一个照片类的问题;达到了在聚类时避免出现一个照片类因为存在少数错误人脸照片时,引入更多错误人脸照片的聚类错误,提高聚类的准确度的效果。
技术领域
本公开涉及人脸识别领域,特别涉及一种人脸聚类方法及装置。
背景技术
人脸聚类方法是一种基于人脸特征将相似人脸进行聚类的方法。在照片管理程序中,可以通过人脸聚类方法将对应于不同人脸的照片进行聚类,从而形成不同的相册。
相关技术中的一种人脸聚类方法,包括:第一,将每一张人脸照片初始化为一个照片类;第二,根据每张人脸照片的特征向量,计算任意两个照片类之间的距离;第三,若两个照片类之间的距离小于阈值,则将两个照片类聚类至同一个照片类;迭代上述第二步骤和第三步骤。但是在聚类过程中,若照片类A中存在几张错误人脸照片,照片类B中存在多张与该错误人脸照片对应的其它人脸照片,则在不断迭代过程中,有可能错误地将照片类A和照片类B聚类至同一个照片类中。
发明内容
为了解决在人脸聚类时,照片类B中存在与照片类A中错误人脸相对应的其他人脸照片时,有可能会错误地将照片类A与照片类B聚类至同一个照片类中的问题,本公开提供一种人脸聚类方法及装置。该技术方案如下:
根据本公开实施例的第一方面,提供一种人脸聚类方法,该方法包括:
获取第一照片类和第二照片类,第一照片类包括聚类得到的至少两张人脸照片;
对第一照片类中的人脸照片进行聚类,得到至少一个照片子类;
将至少一个照片子类中的一个照片子类确定为正确人脸子类;
计算正确人脸子类与第二照片类之间的距离;
若距离小于阈值,则将第一照片类和第二照片类聚类至同一个照片类。
可选的,对第一照片类中的人脸照片进行聚类,得到至少一个照片子类,包括:
将第一照片类中的每张人脸照片确定为一个特征点,根据任意两个特征点之间的距离计算出至少一个单连通分支;每个单连通分支中的任意两个特征点之间存在至少一条路径;
对于每个单连通分支,将单连通分支中的特征点所对应的人脸照片确定为一个照片子类。
可选的,对第一照片类中的人脸照片进行聚类,得到至少一个照片子类,包括:
将第一照片类中的每张人脸照片确定为一个特征点,根据任意两个特征点之间的距离计算出至少一个双连通分支;每个双连通分支中的任意两个特征点之间存在至少两条路径;
对于每个双连通分支,将双连通分支中的特征点所对应的人脸照片确定为一个照片子类。
可选的,对第一照片类中的人脸照片进行聚类,得到至少一个照片子类,包括:
将第一照片类中的每张人脸照片确定为一个特征点,根据任意两个特征点之间的距离计算出至少一个单连通分支,根据任意两个特征点之间的距离计算出至少一个双连通分支;
计算单连通分支和双连通分支的并集,得到至少一个合并连通分支;
对于每个合并连通分支,将合并连通分支中的特征点所对应的人脸照片确定为一个照片子类。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于小米科技有限责任公司,未经小米科技有限责任公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201510970887.1/2.html,转载请声明来源钻瓜专利网。