[发明专利]基于回归模型的快速单幅图像去雾算法及系统有效

专利信息
申请号: 201511021549.X 申请日: 2015-12-30
公开(公告)号: CN105654440B 公开(公告)日: 2018-07-27
发明(设计)人: 尚媛园;栾中;周修庄;丁辉;付小雁;邵珠宏;赵晓旭 申请(专利权)人: 首都师范大学
主分类号: G06T5/00 分类号: G06T5/00;G06K9/62
代理公司: 北京清亦华知识产权代理事务所(普通合伙) 11201 代理人: 张大威
地址: 100048 北*** 国省代码: 北京;11
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 基于 回归 模型 快速 单幅 图像 算法 系统
【说明书】:

发明公开了一种基于回归模型的快速单幅图像去雾算法及系统,算法包括回归模型的训练过程和雾霾图像的处理过程,训练过程包括:生成无雾图像块作为样本;利用大气模型为样本加雾;提取样本的样本特征值;根据样本特征值使用SVM学习回归模型;处理过程包括:输入雾霾图像,将雾霾图像分割为多个均匀块,并提取雾霾图像的最大通道图像;对均匀块进行图像块特征值提取,以根据SVM学习回归模型估计传输参数,并使用引导滤波优化传输图;对提取到的最大通道图像分别进行最大值滤波以及中值滤波,引导滤波优化大气光;根据滤波优化传输图以及优化大气光进行反变换以得到清晰图像。该算法能够快速,准确的对图像进行去雾处理,有效提高图像处理质量。

技术领域

本发明属于图像处理技术领域,尤其涉及一种基于回归模型的快速单幅图像去雾算法及系统。

背景技术

雾霾图像多拍摄于恶劣天气下的户外场景,由于空气中悬浮颗粒的存在,光源和场景反射光在进入成像设备前发生散射,导致图像偏亮,图像对比度,饱和度等指标下降,信噪比增加。图像的这种变化对人来说会使信息难以辨认,或失去观赏性。对于后续的图像处理及计算机视觉算法来说,增加了算法失效的可能性。因此图像去雾具有很强的实际需求及发展空间。

早期的图像去雾算法通常需要除图像以外的其它信息,如图片景深信息,3D地理模型等,同一场景下不同偏振的图片以及不同天气下的图片,相对于单幅图像去雾,这些算法在有准确的辅助信息的情况下效果非常好,但是在实际的应用中,获取这些辅助信息的难度和成本远大于获取图像本身,因此这类算法的实际应用范围受到了限制。

单幅图像去雾是一个不适定问题,图像的恢复主要依靠某些先验或假设,Tan等直接采用对比度最大化的方法,但是该方法处理后容易产生halo效应和对比度过度增强的效应。Fattal基于大气传输函数和表面阴影局部统计不相关的假设,利用独立成分分析来恢复图像。该算法有一定的去雾效果,但浓雾区域处理效果并不理想。Kim等根据雾霾图像对比度偏低的特点,利用图像对比度和信息损失共同构建代价函数估计传输参数,该算法在不损失图像细节的前提下最大化图像对比度,去雾效果较明显,但有些图像仍然会出现增强过度的现象。

近年来,Kratz等提出了针对图像的马尔科夫随机场模型,认为场景反照率和景深是统计不相关的独立层,使用期望最大化算法对图像进行因式分解。但该算法常导致色彩过度饱和,甚至因此而丢失图像细节。He等提出了暗通道去雾算法,提出了无雾图像局部暗通道最小值接近0的先验,该算法去雾效果良好,理论简单,应用范围非常广泛。但有相当一部分图像并不符合暗通道统计规律,且软抠图时间复杂度非常高。针对以上问题有不少改进算法。Tarel和Hautiere使用中值滤波替换了抠图操作以提升运算性能;Gibson等使用标准中值滤波以避免去雾过程中出现晕轮效果;Yu等使用联合双边滤波来实现快速去雾处理;Tarel 等对路面图像施加平面约束以提高传播图估算的精确程度。

Yuk等提出了在视频图像中区分前景和背景的去雾算法。采用前景递减前承条件共轭梯度函数减轻传输参数估算过程中前景的干扰。该算法在视频图像中去雾效果较好,但由于利用了帧间信息,从本质上说,也相当于采用了多幅图像。Meng等提出了基于边界约束和上下文正则化的图像去雾算法,该算法提出了一种新的传输参数约束形式,总体效果要优于He算法,边缘细节部分处理的也比较好。但在天空和路面等图像区域上仍有过度增强的现象。Tang等提出了基于学习模型的去雾算法,该算法采集了高对比度图像块作为训练样本,提取了包括暗通道特征在内的多个雾霾图像相关特征,然后利用随机森林得到回归模型,算法效果很好,但需要对每个像素点取多个尺度的各特征,时间复杂度非常高,不适合需要快速处理的场合。而且其需要针对不同的去雾问题采用不同的训练集,降低了算法的实用性。

然而,当前主流去雾算法中,存在去雾力度把握不准,计算速度慢无法实时运行,并且对于浓雾图像进行去雾效果更不尽人意。

发明内容

本发明的目的旨在至少在一定程度上解决上述相关技术中的技术问题之一。

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于首都师范大学,未经首都师范大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/201511021549.X/2.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top