[发明专利]一种腔体滤波器智能调谐算法及使用该算法的调谐方法有效

专利信息
申请号: 201511031907.5 申请日: 2015-12-31
公开(公告)号: CN105680827B 公开(公告)日: 2018-06-22
发明(设计)人: 欧勇盛;杨镜锋;王志扬;冯伟 申请(专利权)人: 中国科学院深圳先进技术研究院
主分类号: H03H21/00 分类号: H03H21/00
代理公司: 深圳市科进知识产权代理事务所(普通合伙) 44316 代理人: 郝明琴
地址: 518055 广东省深圳*** 国省代码: 广东;44
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 调谐 滤波器 腔体滤波器 算法 调谐系统 动作指令 采样 降维 矢量网络分析仪 机械执行机构 工控机系统 策略模型 调谐螺杆 降维处理 输出计算 特征输入 自动调谐 智能 种腔 申请
【说明书】:

一种使用腔体滤波器智能调谐算法的调谐方法,其特征在于,包括:安装连接调谐系统,所述调谐系统包括工控机系统、机械执行机构、腔体滤波器、及矢量网络分析仪;采样当前待调腔体滤波器的S参数波形;将采样的S参数波形降维处理得到该S参数波形的降维特征;将当前S参数波形的降维特征输入预先训练好的调谐策略模型计算出待调腔体滤波器需执行的调谐动作;输出计算得到的调谐动作指令并依据所述调谐动作指令调节所述腔体滤波器的调谐螺杆。本申请实现了滤波器的自动调谐,解决了现有人工调谐低效率、高成本的缺陷。

技术领域

本申请涉及工业机器人和自动化领域,尤其涉及一种腔体滤波器智能调谐算法及使用该算法的调谐方法。

背景技术

腔体滤波器是一种无源微波器件,广泛应用于卫星通信、中继通信、雷达、电子对抗及微波测量仪表中,它的使用对于分离频谱信息、提高通信质量、防止信号串扰有着十分重要的作用。在腔体滤波器生产过程中,由于工件存在生产误差,需要调整调谐螺杆的位置,即调整滤波器内的形状,从而使得腔体滤波器符合规格要求——这一工序简称为“滤波器调谐工序”。

当前,“滤波器调谐工序”主要采用人工操作,即工人使用螺丝刀,观察矢量网络分析仪显示的散射参数(S参数)波形的变化,根据自己的调谐经验进行判断,逐个手动调谐腔体滤波器上的调谐螺杆,直到矢量网络分析仪显示的S参数波形符合要求。现有的人工调试工序极为复杂:一个腔体滤波器由多路谐振腔构成,每路谐振腔均有不同的波形输出的要求,需要通过几个至十几个调谐杆的高度来调谐。每个调谐杆的高度对整体的波形输出均有不同的影响,调谐杆的高度的不同组合也会影响输出,且所产生影响的规律难以把握。且调试工序还没有一套规范固定的程序,能实现快速的调谐,只能通过人工观察S参数波形,凭借经验,不断循环尝试。据统计,对于一个调谐经验比较丰富的工人,调好一个腔体滤波器产品,也需要花费30到40分钟,调试效率极低。

且由于受到前段生产工艺、机械加工精度、手工作业等的影响,同一款腔体滤波器产品也存在个体差异。作为一种十分敏感的电子产品,同种腔体滤波器产品的个体差异会对滤波波形输出产生较大影响,即同一款腔体滤波器产品并不适用同一种调谐方式,同一款产品中的每个个体均需不一样的调谐方式。

发明内容

本申请实施例提供一种腔体滤波器智能调谐方法,用以解决现有技术中无法实现自动化调谐腔体滤波器,人工调谐腔体滤波器效率低下、成本高昂的问题。

本申请实施例采用下述技术方案:

一种腔体滤波器智能调谐算法,其特征在于,包括:

设定目标数据并获取实际数据,所述目标数据包括待调腔体滤波器的调谐指标、腔体滤波器的调谐螺杆分布位置、可调位置限制、调谐螺杆数量,所述实际数据包括当前腔体滤波器的S参数波形;

随机采集S参数波形样本数据并获取特征向量;

训练获得调谐策略模型,所述调谐策略模型是增强学习模型与神经网络系统的融合,包括状态、环境、奖励、动作和策略,其中状态为当前S参数波形的降维特征,环境为待调滤波器,动作为滤波器调谐过程中调谐螺杆的执行动作,策略为“ε-贪婪机制”,根据策略挑选动作、执行动作获得新状态和对应新奖励值以不断优化策略,使奖励值达到最佳。

优选地,随机采集S参数波形样本数据并获取特征向量,包括:

随机调整腔体滤波器的调谐螺杆的高度,采集若干状态下S参数波形的原始样本数据,该样本数据包含各种螺杆高度组合对应的S参数波形;

计算采集到的样本数据的协方差矩阵;

利用奇异值分解求出协方差矩阵的特征向量和特征值,并将特征值按大到小排序;

选取前k个最大的特征值对应的特征向量得到S参数波形的特征向量。

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于中国科学院深圳先进技术研究院,未经中国科学院深圳先进技术研究院许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/201511031907.5/2.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top