[实用新型]一种溺水模式智能推理系统有效

专利信息
申请号: 201520041882.6 申请日: 2015-01-21
公开(公告)号: CN204480252U 公开(公告)日: 2015-07-15
发明(设计)人: 严建峰;朱世行;李云飞;曾嘉;贾俊铖;杨璐 申请(专利权)人: 苏州大学
主分类号: G06F19/00 分类号: G06F19/00
代理公司: 北京集佳知识产权代理有限公司 11227 代理人: 唐灵;常亮
地址: 215123 江苏*** 国省代码: 江苏;32
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 一种 溺水 模式 智能 推理 系统
【说明书】:

技术领域

实用新型属于人工智能领域,具体涉及一种涉及大数据处理与机器学习相关内容的溺水模式智能推理系统。

背景技术

目前,在监控和处理游泳时可能发生的溺水问题时,主要依赖于救生员的现场监视,对游泳者的溺水状况完全依赖于救生员的肉眼观察判断。这种判断方式对救生员的注意力集中度和观察判断力提出了比较高的要求,即使是熟练的救生员也难免有疏忽错漏之处。一旦因为救生员的疏忽而发生意外,很容易造成难以挽回的损失。

因此,针对这类问题,在相关的智能游泳平台上使用一种利用传感器数据智能、准确、快速地判断游泳者溺水状况的推理引擎十分必要。本实用新型提供一种溺水模式智能推理系统,以解决上述问题。

本实用新型将涉及到以下技术,首先作出相应说明。

大数据,或称巨量数据、海量数据,是由数量巨大、结构复杂、类型众多数据构成的数据集合,是基于云计算的数据处理与应用模式,通过数据的集成共享,交叉复用形成的智力资源和知识服务能力。

机器学习(Machine Learning,ML)是一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析、算法复杂度理论等多门学科。专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能。在本实用新型中在机器学习的分类器选择中使用决策树作为主要处理方法。

决策树是一个预测模型。其代表对象属性与对象值之间的一种映射关系。树中每个节点表示某个对象,而每个分叉路径则代表的某个可能的属性值,而每个叶结点则对应从根节点到该叶节点所经历的路径所表示的对象的值。决策树仅有单一输出,若欲有复数输出,可以建立独立的决策树以处理不同输出。

群智分析技术,在分类问题时使用多个分类器(即:决策树),再将结果进行综合,从而得出比单一分类器精度高很多、性能更稳定的分析结果。

在线分析技术,允许智能推理引擎不断读取新的溺水数据,从而不断对群智决策树分类器模型进行参数的微调,实现不断提高分类精度的目的。

实用新型内容

本实用新型提供一种溺水模式智能推理系统,包括终端及服务器,所述终端连接服务器,所述服务器包括接收器、分类器及综合处理器,其中,所述分类器分别连接接收器及综合处理器,所述接收器连接综合处理器。所述接收器,用于接收终端发送的数据信息后,转发给分类器及综合处理器。所述分类器,用于对所述接收器发送的数据信息进行训练分析得到分类模型,并根据所述分类模型判断用户是否溺水。所述综合处理器,用于根据接收器提供的数据及分类器的分类模型,对所述分类模型细化处理后,返回给分类器。

优选的,所述终端为游泳手环,由用户游泳时佩带。

根据本实用新型提供的溺水模式智能推理系统,在系统服务器中设置接收器、分类器及综合处理器,所述接收器接收终端发送的数据信息后转发给分类器及综合处理器,分类器对接收器发送的数据信息进行训练分析得到分类模型,并根据所述分类模型判断用户是否溺水。同时综合处理器根据接收器提供的数据及分类器的分类模型,对分类模型细化处理后返回给分类器。如此,不断提高分类精度,有效达到防止溺水的状况。

附图说明

为了更清楚地说明本实用新型实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本实用新型的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。

图1是本实用新型较佳实施例提供的溺水模式智能推理系统示意图;

图2是本实用新型较佳实施例提供的溺水模式智能推理系统工作流程图。

具体实施方式

下文中将参考附图并结合实施例来详细说明本实用新型。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于苏州大学,未经苏州大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/201520041882.6/2.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top