[实用新型]基于双环谐振腔辅助的马赫-曾德尔干涉仪光学生物传感器有效
申请号: | 201520664794.1 | 申请日: | 2015-08-31 |
公开(公告)号: | CN204964384U | 公开(公告)日: | 2016-01-13 |
发明(设计)人: | 李明宇;刘勇;岳永恒;陈阳晴;唐龙华;何建军 | 申请(专利权)人: | 浙江大学 |
主分类号: | G01N21/45 | 分类号: | G01N21/45 |
代理公司: | 杭州求是专利事务所有限公司 33200 | 代理人: | 邱启旺 |
地址: | 310027 浙*** | 国省代码: | 浙江;33 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 基于 谐振腔 辅助 马赫 曾德尔 干涉仪 光学 生物 传感器 | ||
技术领域
本实用新型涉及一种光学生物传感器,尤其涉及一种基于双环谐振腔辅助的马赫‐曾德尔干涉仪光学生物传感器。
背景技术
光学生物传感器因其在生物医学诊断,药物研发,环境监测和食品安全等领域的广泛应用而取得了快速的发展。其中基于光学技术的生物传感器有很多优点:超高的灵敏度,较强的抗电磁干扰能力,高可靠性、高集成度和多参量,因此获得了广泛的关注。
双环谐振腔辅助的马赫‐曾德尔干涉仪光学生物传感器仅需要测量强度信息,无需高分辨率的光谱仪或者可调谐的激光器测量光谱信息,提高传感器灵敏度的同时,大大降低传感器的成本。当入射光的频率在谐振腔的谐振频率附近时,光的相位变化随谐振腔的光学长度变化非常灵敏,马赫‐曾德尔干涉仪可将相位变化的信息转变为输出光强的变化信息,所以此传感器灵敏度非常高。然而在谐振腔的谐振频率附近,谐振腔光学长度的改变引起光相位剧烈变化的同时,振幅也会随之变化。如果马赫‐曾德尔干涉仪的两个臂的光振幅不等,会导致干涉效果不佳。
发明内容
本实用新型的目的在于提供一种基于双环谐振腔辅助的马赫‐曾德尔干涉仪光学生物传感器,选取合适的生物表面修饰材料,使马赫‐曾德尔干涉仪两个臂上的环形波导谐振腔具有某一个共同的谐振频率。当被测液体中抗原与第一个环形波导谐振腔表面的生物抗体结合时,吸附在波导芯层表面,引起第一个环形波导谐振腔的有效折射率增大;而当被测液体中抗原与第二个环形波导谐振腔表面的生物抗体结合时,使生物抗体脱离了波导芯层表面,引起第二个环形波导谐振腔有效折射率减小相同的数值,导致两个环形波导谐振腔内光的相位差增大,但是两个环形波导谐振腔内光的振幅变化相同。
本实用新型的目的是通过以下技术方案来实现的:一种基于双环谐振腔辅助的马赫‐曾德尔干涉仪光学生物传感器,包括激光光源、马赫‐曾德尔干涉仪、第一环形谐振腔、第二环形谐振腔、第一探测器和第二探测器等;所述马赫‐曾德尔干涉仪的输入耦合器的输入端与激光光源连接,两个输出端分别与所述马赫‐曾德尔干涉仪的上臂的一端和下臂的一端相连接;所述马赫‐曾德尔干涉仪的上臂和下臂分别与第一环形谐振腔和第二环形谐振腔相耦合;所述马赫‐曾德尔干涉仪的上臂的另一端和下臂的另一端分别与输出耦合器的两个输入端相连接;所述输出耦合器的第一输出端和第二输出端分别与第一探测器和第二探测器相连接;所述第一环形谐振腔的芯层表面修饰有特异性吸附功能的生物抗体;所述第二环形谐振腔的芯层表面修饰有吸附生物抗体的竞争抗原;所述第一环形谐振腔和所述第二环形谐振腔均与被测液体接触。
进一步地,所述修饰生物抗体的第一环形谐振腔与修饰竞争抗原的第二环形谐振腔至少有一个相同的谐振频率。
进一步地,所述激光光源的频率为第一环形谐振腔与第二环形谐振腔的一个共同谐振频率。
进一步地,所述竞争抗原对生物抗体的亲和力小于被测液体中待检测抗原对生物抗体的亲和力。
进一步地,所述马赫‐曾德尔干涉仪、第一环形谐振腔和第二环形谐振腔可采用平面集成光波导,或者分立光学元件,或者光纤构成。
本实用新型具有的有益效果是:本实用新型使用输入光源为单一波长激光光源,降低传感器成本;可以采用集成光波导结构,使传感器集成度高,体积小,便于高通量、多参数测量的实现;在光学谐振腔内芯层表面修饰有特异性吸附功能的生物表面膜,使传感器针对特定待测物质具有选择性吸附功能;利用被测液体中抗原与第一个环形波导谐振腔表面的生物抗体结合时引起第一个环形波导谐振腔的有效折射率增大,而与第二个环形波导谐振腔表面的生物抗体结合时,使生物抗体脱离了波导芯层表面,引起第二个环形波导谐振腔有效折射率减小相同的数值,导致两个环形波导谐振腔内光的相位差增大,但是两个环形波导谐振腔内光的振幅变化相同,保证了马赫‐曾德尔干涉仪的干涉效果,从而大大提高了传感器的灵敏度。
附图说明
图1为基于双环谐振腔辅助的马赫‐曾德尔干涉仪光学生物传感器示意图;
图2为第一环形波导谐振腔的端面示意图;
图3为第二环形波导谐振腔的端面示意图;
图4为第一环形波导谐振腔有效折射率变化δn时其透射率和相位变化示意图;
图5为第一环形波导谐振腔有效折射率变化δn,第二环形波导谐振腔有效折射率变化-δn时,两个探测器接收到的归一化功率变化示意图;
图6为两个探测器接收到光功率比值和环形波导谐振腔有效折射率变化δn关系示意图;
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于浙江大学,未经浙江大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201520664794.1/2.html,转载请声明来源钻瓜专利网。