[发明专利]具有回调的卷积矩阵相乘以用于深度卷积神经网络的深度瓦片化在审
申请号: | 201580075905.8 | 申请日: | 2015-12-09 |
公开(公告)号: | CN107209871A | 公开(公告)日: | 2017-09-26 |
发明(设计)人: | D·H·F·德克曼;M·巴丁 | 申请(专利权)人: | 高通股份有限公司 |
主分类号: | G06N3/04 | 分类号: | G06N3/04 |
代理公司: | 上海专利商标事务所有限公司31100 | 代理人: | 周敏,陈炜 |
地址: | 美国加利*** | 国省代码: | 暂无信息 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 具有 卷积 矩阵 相乘 用于 深度 神经网络 瓦片 | ||
相关申请的交叉引用
本申请依据35U.S.C.§119(e)要求于2015年2月13日提交的题为“CONVOLUTION MATRIX MULTIPLY WITH CALLBACK FOR DEEP TILING FOR DEEP CONVOLUTIONAL NEURAL NETWORKS(具有回调的卷积矩阵相乘以用于深度卷积神经网络的深度瓦片化)”的美国临时专利申请No.62/116,306以及于2015年5月20日提交的题为“CONVOLUTION MATRIX MULTIPLY WITH CALLBACK FOR DEEP TILING FOR DEEP CONVOLUTIONAL NEURAL NETWORKS(具有回调的卷积矩阵相乘以用于深度卷积神经网络的深度瓦片化)”的美国临时专利申请No.62/164,493的权益,其公开内容通过援引整体明确纳入于此。
背景技术
领域
本公开的某些方面一般涉及神经系统工程,尤其涉及用于卷积矩阵相乘操作的高效处理的系统和方法。
背景技术
可包括一群互连的人工神经元(例如,神经元模型)的人工神经网络是一种计算设备或者表示将由计算设备执行的方法。人工神经网络可具有生物学神经网络中的对应的结构和/或功能。
卷积神经网络是一种前馈人工神经网络。卷积神经网络可包括可被配置在感受野的神经元层。卷积神经网络(CNN)具有众多应用。具体地,CNN已被广泛使用于模式识别和分类领域。
深度学习架构(诸如,深度置信网络和深度卷积网络)已经被越来越多地用于对象识别应用中。类似于卷积神经网络,这些深度学习架构中的计算可在处理节点群体上分发,其可被配置在一个或多个计算链中。这些多层架构提供更大灵活性,因为它们可以一次被训练一层并可使用反向传播进行微调。其他模型也可用于对象识别。例如,支持向量机(SVM)是可被应用于分类的学习工具。支持向量机包括对数据进行分类的分开的超平面(例如,决策边界)。该超平面由监督式学习定义。期望的超平面增加训练数据的余裕。换言之,超平面应该具有到训练示例的最大的最小距离。
尽管这些解决方案在数个分类基准上取得了优异的结果,但它们的计算复杂度可能极其高。另外,模型的训练是有挑战性的。
概述
在本公开的一个方面,公开了一种进行图像和滤波器到虚拟矩阵的地址转译以通过矩阵乘法执行卷积的方法。该方法包括接收图像和滤波器。每一个图像和滤波器具有存储器地址。该方法还包括基于所计算的经线性化图像和所计算的经线性化滤波器将存储器地址映射到虚拟矩阵地址。该方法进一步包括将虚拟矩阵中的数据转换成预定义内部格式。该方法还进一步包括基于虚拟矩阵地址通过预定义内部格式的数据的矩阵乘法来卷积图像。
本公开的另一方面涉及一种设备,包括用于接收图像和滤波器的装置。每一个图像和滤波器具有存储器地址。该设备还包括用于基于所计算的经线性化图像和所计算的经线性化滤波器将存储器地址映射到虚拟矩阵地址的装置。该设备进一步包括用于将虚拟矩阵中的数据转换成预定义内部格式的装置。该设备还进一步包括用于基于虚拟矩阵地址通过预定义内部格式的数据的矩阵乘法来卷积图像的装置。
在本公开的另一方面,公开了一种用于进行图像和滤波器到虚拟矩阵的地址转译以通过矩阵乘法执行卷积的计算机程序产品。该计算机程序产品具有其上记录有非瞬态程序代码的非瞬态计算机可读介质。该程序代码由处理器执行且包括用于接收图像和滤波器的程序代码。每一个图像和滤波器具有存储器地址。该程序代码还包括用于基于所计算的经线性化图像和所计算的经线性化滤波器将存储器地址映射到虚拟矩阵地址的程序代码。该程序代码进一步包括用于将虚拟矩阵中的数据转换成预定义内部格式的程序代码。该程序代码还进一步包括用于基于虚拟矩阵地址通过预定义内部格式的数据的矩阵乘法来卷积图像的程序代码。
本公开的另一方面涉及一种进行图像和滤波器到虚拟矩阵的地址转译以通过矩阵乘法执行卷积的装置,该装置具有存储器以及耦合至该存储器的一个或多个处理器。该(诸)处理器被配置成接收图像和滤波器。每一个图像和滤波器具有存储器地址。该(诸)处理器还被配置成基于所计算的经线性化图像和所计算的经线性化滤波器将存储器地址映射到虚拟矩阵地址。该(诸)处理器被进一步配置成将虚拟矩阵中的数据转换成预定义内部格式。该(诸)处理器还被进一步配置成基于虚拟矩阵地址通过预定义内部格式的数据的矩阵乘法来卷积图像。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于高通股份有限公司,未经高通股份有限公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201580075905.8/2.html,转载请声明来源钻瓜专利网。
- 上一篇:太阳能电池组件的环境温度巡查装置
- 下一篇:一种确定环境参数的方法和装置