[发明专利]一种基于神经网络模型的上下文感知音乐推荐方法有效

专利信息
申请号: 201610008374.7 申请日: 2016-01-07
公开(公告)号: CN105677850B 公开(公告)日: 2019-03-26
发明(设计)人: 邓水光;王东京;陈明龙;李莹;吴健;尹建伟;吴朝晖 申请(专利权)人: 浙江大学
主分类号: G06F16/635 分类号: G06F16/635;G06N3/04
代理公司: 杭州天勤知识产权代理有限公司 33224 代理人: 胡红娟
地址: 310027 浙*** 国省代码: 浙江;33
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 一种 基于 神经网络 模型 上下文 感知 音乐 推荐 方法
【说明书】:

发明公开了一种基于神经网络模型的上下文感知音乐推荐方法,包括:S1基于神经网络模型的音乐特征的提取和用户全局兴趣的建模;S2用户收听上下文兴趣的提取;S3上下文感知的音乐推荐。本发明利用神经网络模型从用户的音乐收听序列中提取音乐的特征和用户的全局兴趣特征,再从用户的完整收听序列中提取用户的收听上下文兴趣,最后在推荐的时候综合考虑用户的全局兴趣和当前收听上下文兴趣,从而能够让推荐的音乐符合用户的实时需求和偏好,从而减少用户的搜索成本并提高用户的满意度。

技术领域

本发明属于数据挖掘及推荐技术领域,具体涉及一种基于神经网络模型的上下文感知音乐推荐方法。

背景技术

随着移动通信带宽的增加、终端处理能力的增强、以及传感技术的发展,越来越多的用户通过移动终端来收听音乐。移动用户的听歌喜好通常会随着时间、空间、天气、身体状况不同而变化,传统的音乐推荐系统已不适用于个性化移动网络服务领域。近年来,基于上下文感知的音乐推荐系统通过将上下文信息引入推荐系统,成为一个新兴的研究领域。在研究中发现,把上下文信息融入推荐系统,相当于把传统的“用户-项目”二维评分效用模型扩展为包含多种上下文信息的多维评分效用模型,有利于提高推荐精确度。因此利用移动终端提供的位置、时间、空间、天气等上下文信息,推荐更符合用户偏好、当前心情和周围环境的音乐,具有重要的研究意义。

目前,基于上下文信息的音乐推荐方法通常采用了“多维推荐”转化为“二维推荐”的设计思路,在推荐结果生成之前、生成之后或者生成的过程中,利用当前上下文信息过滤掉与当前上下文信息不匹配的数据,同时采用传统二维推荐技术(包含协同过滤、基于内容的过滤、基于知识的过滤、混合式过滤等)生成推荐结果。因为利用了传统推荐系统的成熟技术,此类方法成为目前应用最广的上下文感知推荐方法。

然而,现有技术在音乐与用户的匹配过程只考虑了用户的上下文信息,缺乏对音乐内容的深层解析,认为所有音乐都是同质的,音乐的不同属性来自用户在不同情境下对音乐具有的不同喜好程度,即由音乐的用户属性对不同音乐进行差异化区分,从而忽略了音乐作为一类多媒体文件,其自身具有的上下文属性。这种推荐方法过于主观,降低了用户与音乐的耦合性,从而对推荐系统的精度有所影响。在很多场景下,用户的收听上下文往往会主导用户的需求,例如用户的全局偏好包括摇滚乐和纯音乐,但是用户在晚上休息的时候,会更喜欢后者。

发明内容

针对现有技术所存在的上述技术问题,本发明提供了一种基于神经网络模型的上下文感知音乐推荐方法,能够让推荐的音乐符合用户的实时需求和偏好。

一种基于神经网络模型的上下文感知音乐推荐方法,包括如下步骤:

(1)收集用户的完整音乐收听序列,所述的完整音乐收听序列包含用户历史对于音乐的每条收听记录;

(2)根据所有用户的完整音乐收听序列,建立以下目标函数L:

其中:A表示所有用户组成的用户集群,Au表示用户集群A中的第u个用户,Hu表示用户Au的完整音乐收听序列,p(Au|Hu)表示完整音乐收听序列Hu下观测到用户Au的概率,表示完整音乐收听序列Hu中的第i条收听记录,表示收听记录的上下文记录即包括收听记录的前c条以及后c条收听记录,表示上下文记录下观测到收听记录的概率,c为大于0的自然数,i和u均为自然数且1≤i≤m,1≤u≤n,m为完整音乐收听序列Hu中收听记录的总数量,n为用户集群A中用户的总数量;

(3)对上述目标函数L进行最大化求解,以求得乐库中每首音乐的特征向量以及每个用户的全局兴趣向量;

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于浙江大学,未经浙江大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/201610008374.7/2.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top