[发明专利]一种图片浏览方法有效

专利信息
申请号: 201610028471.2 申请日: 2016-01-15
公开(公告)号: CN105631039B 公开(公告)日: 2019-02-15
发明(设计)人: 邓伟洪;韩嘉杰;胡佳妮;郭军 申请(专利权)人: 北京邮电大学
主分类号: G06F16/54 分类号: G06F16/54;G06K9/00
代理公司: 北京聿宏知识产权代理有限公司 11372 代理人: 张文娟;朱绘
地址: 100876 *** 国省代码: 北京;11
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 一种 图片 浏览 方法
【说明书】:

发明公开了一种图片浏览方法,包括:基于人脸特征向量检测目标图片集中的人脸;从检测出人脸后的目标图片集中选择指定人脸,并获取指定人脸的人脸特征向量;基于人脸特征向量计算指定人脸与目标图片集中检测出的其他人脸的相似度;基于相似度排序显示目标图片集中的图片。本发明摆脱了人工标签标注的复杂性并避免盲目自动分组的高错误率,实现了基于人脸相似度的图片浏览。

技术领域

本发明涉及认证识别技术领域,具体地说,涉及一种图片浏览方法。

背景技术

随着数码拍摄设备的普及和存储器的发展,用户拍摄、存储的图片越来越多,而且人物照片在其中占较大比例。当用户在查看图片时,数码设备如手机、电脑、电子相框等通常会按照拍摄或保存时间将图片呈现出来以供用户浏览。但是用户往往对图片中的人物更加感兴趣。因此,基于人脸识别技术将同一个人的多张图片聚类而后按照相似度降序排序的浏览方式更能契合用户的潜在需求。

当前市场上有一些智能手机相册支持基于标签的图片浏览,该标签可以是人物姓名。当用户选择一个标签后,相册应用程序将显示该标签下的所有图片。按照标签产生方法的不同,大致可以分为两种:第一种是不使用任何检测或者识别手段,通过用户纯手动标注生成标签;第二种是使用人脸检测和分组聚类方法,先根据相似度将包含人脸的图片分为多个分组,然后用户再对每个分组进行标注。具体而言,这类方法通常先对图片进行人脸检测,对检测器获取的人脸进行两两之间的相似度计算,相似度高的图片对归到同一组,相似度低的划分为新的分组。然后用户只需要对分组结果进行标注,将同一组的图片标注为某个人物标签。

以上通过人物标签实现图片浏览方法中,第一种方法的主要缺点是前期需要极大的人力成本,用户需要对每一张图片都进行标注才能有较好的标签分组效果,既消耗时间也影响用户体验;第二种方法主要受到人脸检测和分组性能的制约,市场上的产品多数存在人脸漏检(即没有把图片中所有人脸都检测到)、错检(把非人脸区域检测判断为人脸),分组错误(不同人物归到同一组或同样人物划分到不同组)等问题。而且两种方法重点都在于分组查看,相似度计算仅用于获取分组,不能按相似度排序来浏览图片。同时,那些没有标签标注的图片,有可能在浏览时被忽略。并且,在第二种方法中,对于一些不感兴趣的人物(如出现在照片中的路人)或者错误检测(半张脸或不是人脸)会导致图片分组结果不准确,影响用户体验。对于多人照片或合照的处理,基于标签的图片分组浏览也容易造成用户的困扰:可能有些用户只想把某个人物的单人照片归为一组而智能相册把合照也插入到这个分组;而有的用户可能想把某个人物的合照和单人照都加入到同一分组。

发明内容

为解决以上问题,本发明提供了一种基于人脸相似度的图片浏览方法。

根据本发明的一个实施例,提供了一种图片浏览方法,包括:

基于人脸特征向量检测目标图片集中的人脸;

从检测出人脸后的目标图片集中选择指定人脸,并获取所述指定人脸的人脸特征向量;

基于所述人脸特征向量计算所述指定人脸与目标图片集中检测出的其他人脸的相似度;

基于所述相似度排序显示目标图片集中的图片。

根据本发明的一个实施例,基于人脸特征向量检测目标图片集中的人脸的步骤进一步包括:

基于人脸检测及肤色检测确定目标图片集中的人脸候选框;

对齐所述人脸候选框中的人脸以确保将人脸由非正脸调整至正脸;

提取对齐后的人脸候选框中的人脸特征向量;

基于模板人脸集对所述人脸特征向量进行过滤处理,以排除错误检测出的非人脸候选框,从而确定目标图片集中的人脸。

根据本发明的一个实施例,确定目标图片集中的人脸候选框的步骤进一步包括:

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于北京邮电大学,未经北京邮电大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/201610028471.2/2.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top