[发明专利]多尺度空间下不确定行为语义的社交群体发现方法有效

专利信息
申请号: 201610038214.7 申请日: 2016-01-20
公开(公告)号: CN105719191B 公开(公告)日: 2019-10-11
发明(设计)人: 于亚新;隋鸣飞;张海军;苏诚成 申请(专利权)人: 东北大学
主分类号: G06Q50/00 分类号: G06Q50/00;G06F16/35
代理公司: 沈阳东大知识产权代理有限公司 21109 代理人: 梁焱
地址: 110819 辽宁*** 国省代码: 辽宁;21
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 尺度 空间 不确定 行为 语义 社交 群体 发现 系统 方法
【说明书】:

发明涉及一种多尺度空间下不确定行为语义的社交群体发现方法,属于数据挖掘和知识发现领域,本发明基于用户社交网Twitter行为轨迹,根据其发布推文地理位置的相似性以及推文词条所表达的不确定活动语义的相似性,来发现用户是否具相似有行为关系,从而找到对应的相似行为用户群体;实验证明,本发明在发现用户相似行为群体的准确性上优于现在已有的判断方法,具有很高的实际应用价值,如果能够得到极大推广,势必会有助于产业创新、促进跨界融合、惠及社会民生,推动我国经济和社会的创新发展。

技术领域

本发明属于数据挖掘和知识发现领域,具体涉及一种多尺度空间下不确定行为语义的社交群体发现方法。

背景技术

随着社交网应用的快速普及,越来越多的用户融入到社交网中,比较典型的应用有国内的新浪微博、国外的推特(Twitter)等,这些社交应用允许用户将其最新动态和想法以短信形式发布到手机或是网站,如果用户愿意,还可发布微博-推文所处物理位置信息。微博-推文内容虽然简短,但却蕴涵一定语义,在某种程度上可以用于推演用户行为;而允许公开物理位置信息则可以方便追踪用户最新动态,如果能将上述两个方面加以有效利用,就能更好地为诸如商业销售、旅游路线推荐、广告精准投放以及城市功能规划等领域进行服务。

令人遗憾的是,迄今为止,在行为语义研究方面,几乎所有研究成果都认为行为语义是确定性的,但事实上,行为语义本身往往具有一定的不确定性,这主要源于当用推文对应的“词条集合(a set ofterms)”表达行为所蕴涵的“活动(activity)”语义时,“词条”与“活动”之间存在着不确定的语义映射关系,比如一个“词条”可隶属于多个“活动”,而一个“活动”又可包含多个词条,正是这种语义映射的不确定性在一定程度上影响了相似行为用户群体发现的精度,但目前该问题却一直未能引起相关人员的高度重视。而另一方面,在利用微博和推特等社交数据服务于各种应用时没有充分考虑不同地理空间尺度对社交群体聚类的影响。实际上,根据地理学第一定律,有理由认为位置相近用户所产生的行为要比距离较远用户产生的行为更相似;其次,在细粒度地理空间上共享相似位置的用户具有更大的行为相似可能性,比如,两个用户在同一大学发推文可能比在同一城市发推文更具行为相似性,因此以分裂方式对位置轨迹进行不同空间度量尺度下的递归聚类,可以更有效地区分相似行为用户。

发明内容

针对现有技术的不足,本发明提出一种多尺度空间下不确定行为语义的社交群体发现方法,基于用户社交网Twitter行为轨迹,根据其发布推文地理位置的相似性以及推文词条所表达的不确定活动语义的相似性,来发现用户是否具有相似行为关系。

一种多尺度空间下不确定行为语义的社交群体发现系统,包括社交网推文采集模块、多尺度空间下推文物理位置聚类模块、推文物理位置相似度矩阵计算模块、不确定行为语义词条库构建模块、推文词条提取模块、推文词条表达活动概率值及相似性概率获取模块和行为相似社交群体发现模块,其中:

社交网推文采集模块:用于采集社交网站的推文数据集,包括发布内容、发布位置、用户ID、用户名和文本发布时间,并经过数据清洗操作后进行存储;

多尺度空间下推文物理位置聚类模块:用于将每个用户推文形成的时空轨迹,按照基于密度的聚类方式在不同地理空间尺度下进行浓密区聚类,以生成用户多层次推文物理位置聚类簇序列;

推文物理位置相似度矩阵计算模块:用于对聚类所得的任意一对用户间的各层推文轨迹簇序列进行物理位置的综合性相似度获取,即获得推文轨迹物理位置相似度;

不确定行为语义词条库构建模块:用于构建社交网用户行为活动词条库,并抽取出每类活动包含的词条,通过重要性权重分布曲线,确定活动相关词条的判断阈值和活动半相关词条的判断阈值;将词条权重概率值大小与阈值进行比较,将词条分为活动相关词条、活动半相关词条和活动不相关词条三类,并赋予词条表达活动的概率值,获得不确定词条活动库;

推文词条提取模块:用于对所有用户发布的推文文本进行词条提取;

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于东北大学,未经东北大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/201610038214.7/2.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top