[发明专利]一种基于视觉特征的无人机在审
申请号: | 201610045878.6 | 申请日: | 2016-01-22 |
公开(公告)号: | CN105718895A | 公开(公告)日: | 2016-06-29 |
发明(设计)人: | 张健敏 | 申请(专利权)人: | 张健敏 |
主分类号: | G06K9/00 | 分类号: | G06K9/00;G06K9/62 |
代理公司: | 北京高航知识产权代理有限公司 11530 | 代理人: | 丁艳侠 |
地址: | 315200 浙江*** | 国省代码: | 浙江;33 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 一种 基于 视觉 特征 无人机 | ||
1.一种基于视觉特征的无人机,包括无人机和安装在无人机上的监测装置,监测装置用于对无人机附近的活动进行视频图像监测,其特征是,监测装置包括预处理模块、检测跟踪模块、识别输出模块;
(1)预处理模块,用于对接收到的图像进行预处理,具体包括图像转化子模块、图像滤波子模块和图像增强子模块:
图像转化子模块,用于将彩色图像转化为灰度图像:
其中,R(x,y)、G(x,y)、B(x,y)分别代表像素(x,y)处的红绿蓝强度值,H(x,y)代表坐标(x,y)处的像素灰度值;图像大小为m×n;
图像滤波子模块,用于对灰度图像进行滤波:
采用维纳滤波来进行一级滤除后,定义svlm图像,记为Msvlm(x,y),具体定义公式为:Msvlm(x,y)=a1J1(x,y)+a2J2(x,y)+a3J3(x,y)+a4J4(x,y),其中a1、a2、a3、a4为可变权值,i=1,2,3,4;J(x,y)为经滤波后的图像;
图像增强子模块:
当
当
(2)检测跟踪模块,具体包括构建子模块、丢失判别子模块和更新子模块:
构建子模块,用于视觉字典的构建:
在初始帧获取跟踪目标的位置和尺度,在其周围选取正负样本训练跟踪器,将跟踪结果作为训练集X={x1,x2,......xN}T;并对训练集中的每幅目标图像提取128维的SIFT特征其中St表示训练集中第t幅目标图像中SIFT特征的个数;跟踪N帧以后,通过聚类算法将这些特征划分为K个簇,每个簇的中心构成特征单词,记为能够提取到的特征总量其中K<<FN,且视觉字典构建好以后,每幅训练图像表示为特征包的形式,用于表示视觉字典中特征单词出现的频率,用直方图h(xt)表示,h(xt)通过以下方式获取:将一幅训练图像Xt中的每一个特征fs(t)向视觉字典投影,用投影距离最短的特征单词表示该特征,对所有特征投影完毕后,统计每个特征单词的出现频率,并归一化得到训练图像Xt的特征直方图h(xt);
丢失判别子模块,用于判别目标的丢失与否:
当新一帧图像到来时,从K个直方图柱中随机选取Z<K个直方图柱,且Z=4,形成新的大小为Z的子直方图h(z)(xt),子直方图的个数最多为个;计算候选目标区域和训练集中某个目标区域对应子直方图的相似性Фt_z,其中t=1,2,...,N,z=1,2,...,Ns,然后计算总体相似性Фt=1-Πz(1-Фt_z);候选目标区域与目标的相似性用Ф=max{Фt,t}表示,则目标丢失判断式为:
更新子模块,用于视觉字典的更新:
在每帧图像获得目标位置以后,根据仿射变换参数的计算结果,收集所有满足结果参数的SIFT特征点经过F=3帧以后,获得新的特征点集其中St-F代表了从F帧图像中得到的总特征点数;利用下式对新旧特征点重新进行K聚类:其中表示新的视觉字典,视觉字典的大小保持不变;是遗忘因子,表明了旧字典所占的比重,越小,新特征对目标丢失的判断贡献越多,取
(3)识别输出模块,用于图像的识别和输出:在待识别的图像序列中利用跟踪算法获取目标区域,将目标区域映射到已知训练数据形成的子空间,计算子空间中目标区域与训练数据之间的距离,获得相似性度量,判定目标类别,并输出识别结果。
2.根据权利要求1所述的一种基于视觉特征的无人机,其特征是,采用维纳滤波来进行一级滤除后,此时图像信息还包含有残余的噪音,采用以下的二级滤波器进行二次滤波:
其中,J(x,y)为经过滤波后的图像;Pg(x+i,y+j)代表尺度为m×n的函数,且Pg(x+i,y+j)=q×exp(-(x2+y2)/ω),其中q是将函数归一化的系数,即:∫∫q×exp(-(x2+y2)/ω)dxdy=1。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于张健敏,未经张健敏许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201610045878.6/1.html,转载请声明来源钻瓜专利网。