[发明专利]一种雾化吸入系统有效

专利信息
申请号: 201610073819.X 申请日: 2016-02-02
公开(公告)号: CN105749393B 公开(公告)日: 2018-05-29
发明(设计)人: 韩伟忠;王镜銮;佟丽;李国 申请(专利权)人: 青岛大学附属医院
主分类号: A61M16/00 分类号: A61M16/00;A61M16/10;A61M15/00;A61B5/00;A61B5/01;G06F19/00;A61B5/16;A61B5/0476
代理公司: 北京方圆嘉禾知识产权代理有限公司 11385 代理人: 董芙蓉
地址: 266000 山东省青岛市崂山*** 国省代码: 山东;37
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 感知模块 雾化 配置箱 脑电波 电子医疗信息 监控系统 实时监控 通气装置 吸入系统 远程诊疗 供氧源 雾化箱 体温 气管 电动伸缩杆 精神状况 人员操作 通气挡板 治疗装置 调节器 滤气网 限位板 氧气箱 阀门 壳体 情绪 配置 治疗 显示器 氧气
【权利要求书】:

1.一种雾化吸入系统,其特征在于,该雾化吸入系统包括综合配置箱、阀门、通气装置、治疗装置、调节器、余量显示器和供氧源,所述综合配置箱的表面设置有余量显示器,所述综合配置箱的左下角设置有阀门,所述综合配置箱的左侧固定安装有通气装置,通气装置通过导管连接有治疗装置,治疗装置上设置有调节器,所述综合配置箱的顶部正中间设置有供氧源;

所述综合配置箱包括配置箱外壳、雾化箱、氧气箱、支柱、第一气管、第二气管和供氧源配置室,所述配置箱外壳内壁的顶部设置有供氧源配置室,供氧源配置室分别通过导管与配置箱外壳内部设置有的雾化箱和氧气箱相连接,雾化箱和氧气箱通过支柱固定在配置箱外壳内壁的底部,配置箱外壳的左侧设置有通气装置,雾化箱和氧气箱分别通过第一气管和第二气管与通气装置相连接;

所述通气装置包括通气装置壳体、电动伸缩杆、通气挡板、限位板、滤气网,所述通气装置壳体内壁的顶部和底部均设置有电动伸缩杆,电动伸缩杆的活动端固定连接有通气挡板,电动伸缩杆的顶端设置有限位板,所述通气装置壳体的内部设置有滤气网;

所述治疗装置上设置有控制雾化箱和氧气箱的按钮,且控制按钮与通气装置电连接;

所述滤气网设置在通气装置壳体左侧开口处;

所述通气挡板与第一气管和第二气管的管径相适配;

所述雾化箱和氧气箱的内部设置有感应器,感应器与余量显示器信号连接;

所述滤气网上设置有吸水棉;

所述综合配置箱内置电子医疗信息端、情绪感知模块、脑电波感知模块、体温感知模块、远程诊疗单元、监控系统;

所述的脑电波感知模块包括多个脑电波传感器和脑电波处理单元;

所述的体温感知模块内置有非接触式红外温度传感器,该非接触式红外温度传感器分别与温差热电堆放大电路以及温度补偿及放大电路相连,温差热电堆放大电路以及温度补偿及放大电路相连并分别连接到AD转换电路,所述的AD转换电路为一个多路AD转换电路,AD转换电路与主控电路相连,主控电路与显示电路以及报警电路相连;所述的非接触式红外温度传感器采用热电堆红外温度传感器实现对体温信号和环境温度信号即温差热电堆微弱的电压信号和电热调节器的热敏电阻信号的非接触检测;

所述的远程诊疗单元包括:

问诊端,与电子医疗信息端连接;

专家端,通过互联网与所述问诊端远程连接;

数据截取转发器组件,其与所述电子医疗信息端连接,所述数据截取转发器组件无损截取电子医疗信息端内的数据信息后进行无损或有损压缩;

网络安全传输组件,与所述数据截取转发器组件连接,将接收自数据截取转发器组件的数据信息进行解密和加密;网络安全传输组件设置有无线移动网络模块;

数据中转服务器组件,与所述网络安全传输组件连接,所述数据中转服务器组件接收网络安全传输组件发送的数据信息,并将该数据信息发送到相应的专家端;

远程会诊管控服务器,其分别通过互联网与问诊端和专家端连接,对会诊端和专家端的用户进行管理;

所述无线移动网络模块的数据传输方法包括以下步骤:

步骤一,确定邻居节点数:节点广播HELLO消息给周围节点,节点记录接受到的不同的HELLO消息的数目从而得到本身的邻居节点数N;

步骤二,估计节点冗余度:利用邻居节点数N得到节点冗余度的期望值为:

当E(ηN)≥α时认为是绝对冗余节点,当1-α<E(ηN)<α时为相对冗余节点,0≤E(ηN)≤1-α时为非冗余节点,其中,α为预先设定的阈值;

步骤三,估计节点经过信息交换阶段之后的剩余能量:发送机每传1bit信息消耗能量:Eelec-te,接收机每接收1bit信息消耗能量:Eelec-re,且有Eelec-te=Eelec-re;每传输1bit信息通过单位距离发送端放大器需消耗的能量:Eamp,发送端发送kbits信息到距离d的接收端需消耗的能量为Eelec-te*k+Eamp*k*d2,接收端接收kbits信息消耗能量为:Eelec-re*k;具有m个邻居节点的节点需要在信息交换过程中消耗的能量为:

(Eelec-te*k+Eamp*k*d2)*m+(Eelec-re*k)*m

在信息交换过程之后具有m个邻居节点的节点的剩余能量为:

Eest1=E1-(Eelec-te*k+Eamp*k*d2)*m-(Eelec-re*k)*m,其中,E1为信息交换前的节点的实时能量;

步骤四,发现潜在的死亡节点:如果节点能量满足:则为潜在的死亡节点,其中,为一个时间段内消耗的平均能量;

步骤五,节点信息交换:每个节点将包含本身的冗余度信息和是否为潜在的死亡节点的信息广播给所有的邻居节点;

步骤六,非潜在死亡节点估计是否移动到潜在的死亡节点的位置;

估计信息交换消耗的能量:所有可移动节点移动前要进行信息交换,此过程消耗能量为:

(Eelec-te*k+Eamp*k*d2)*L+(Eelec-re*k)*L,L为进行信息交换的节点的数目,k为信息的bit,d为信息传送的距离;

若节点移动,估计节点在移动后的剩余能量:

Eest2=E2-(Eelec-te*k+Eamp*k*d2)*L-(Eelec-re*k)*L-Emove*h,其中,h为移动到目标位置的距离,E2为移动前的节点的实时能量;

判断节点是否具有移动的能量:要求移动节点到底新位置后至少工作x个时间段,若节点能量满足:则此节点具有移动到目标位置的能量,否则,不具有此能力,其中,x为预先设定的阈值;非潜在死亡节点估计是否移动到潜在的死亡节点的位置,具体过程如下:决定是否需要对将死亡节点引起的覆盖面积的丢失采取补偿动作:如果潜在死亡节点是绝对冗余节点,则不需采取任何行动;如果潜在死亡节点的所有邻居节点均为非冗余节点,则无法采取任何行动;其他情况下通过移动节点减少潜在死亡节点引起的覆盖损失;非潜在死亡节点自判断是否具有移动到潜在死亡节点位置的能量:在所有非潜在死亡节点中去掉非冗余节点;估计移动消耗的能量:节点距离将死亡节点的距离为h,则移动要消耗的能量为:Emove*h,其中,Emove为移动单位距离消耗的能量;

步骤七,决定移动节点:

根据如下规则在所有可移动的节点中选择最佳节点:

若在可移动节点中存在绝对冗余节点,根据目标距离判断,移动目标距离最小的绝对冗余节点;若存在多个绝对冗余节点的目标距离相等且均为最小,则再根据剩余能量Eest2的大小判断,选择剩余能量最大的节点;

若在可移动节点中只有相对冗余节点,则根据相对冗余节点的移动距离进行选择,相对冗余节点移动的距离为相对冗余节点的最大可移动距离,最大可移动距离是指在不影响覆盖区域的条件下节点可移动的最大距离,根据最大可移动距离确定相对冗余节点移动的目标位置;比较相对冗余节点的最大可移动距离,移动最大可移动距离最小的相对冗余节点,若存在多个相对冗余节点的最大可移动距离相等且均为最小,则再根据剩余能量Eest2的大小判断,选择剩余能量最大的节点,

步骤八,对剩余绝对冗余节点采用睡眠调度机制:在节点移动到目标位置后,将绝对冗余节点状态改变为睡眠;

所述无线移动网络模块的数据传输方法包括基于最小生成树的数据聚合方法:

步骤一、部署无线传感器节点:在面积为S=W×L的检测区域内,将无线传感器节点部署在检测区域,基站部署在检测区域外,基站用于接收和处理整个无线传感网络收集到的数据信息;

步骤二、选择簇头:将整个检测区域按网格进行均匀划分,使每个网格的大小形状相同,在每个网格中选择位置距离网格中心最近的传感器节点作为簇头,检测区域按照方形网格均匀划分,选取方格中距离中心最近的节点作为簇头;

步骤三、分簇:簇头选择完成后,簇头广播Cluster{ID,N,Hop}信息,其中,ID为节点的编号,N为Cluster信息转发的跳数,且N的初值为0,Hop为系统设定的跳数;处于簇头附近的邻居节点收到Cluster信息后N增加1再转发这一信息,直到N=Hop就不再转发Cluster信息;簇头的邻居节点转发Cluster信息后再向将Cluster信息转发给自己的邻居节点,然后发送一个反馈信息Join{ID,N,Eir,dij,ki}给将Cluster信息转发给自己的节点,最终将Join信息转发给簇头表示自己加入该簇,其中,Eir表示该节点此时的剩余能量,dij表示两节点间的距离,ki表示该节点能够监测得到的数据包的大小;如果一个节点收到了多个Cluster信息,节点就选择N值小的加入该簇,若N相等节点就随便选择一个簇并加入到该簇;如果节点没有收到Cluster信息,则节点发送Help信息,加入离自己最近的一个簇;

其中,得到每个节点初始的剩余能量Eir后,就通过LEACH能耗模型来估算节点能量的剩余值,例如进行了M轮后,一轮为传感器节点得到监测数据然后将数据逐层上传,最终将数据传输给基站的这一过程为一轮,节点的剩余能量估算为:E=Eir-M(Etx+Erx)=Eir-M(2kEelec+kεfree-space-ampd2),Eir即为节点反馈给簇头的剩余能量,LEACH能耗模型是LEACH协议提出的传感器在发送和接收数据时能量消耗的消耗模型,具体表达形式为:

Erx(k)=Ere-elec(k)=kEelec

其中,Eelec表示无线收发电路能耗,εfree-space-amp和εtwo-way-amp分别表示自由空间模型和多路消耗模型的放大器能耗,d0是常数,d是通信节点相隔距离,k为要发送或接收的数据位数,Etx(k,d)和Erx(k)分别表示传感器发送和接收数据时的能耗;通过LEACH能耗模型即可得到节点的剩余能量;

步骤四、簇内节点构成简单图模型:通过步骤三得到簇内所有节点在簇内所处的位置,将每个节点当做图的一个顶点,每两个相邻节点间用边相连接;

步骤五、簇内权值的计算:通过步骤三,簇头获取簇内成员节点的Eir、dij和ki,计算相邻两节点i,j之间的权值,权值的计算公式为:

Wij=a1(Eir+Ejr)+a2dij+a3(ki+kj)

其中,Ejr、kj分别表示节点j的剩余能量和节点j能够监测得的数据的大小,且a1+a2+a3=1,这样系统就根据系统对Eir、dij或ki所要求的比重不同调整ai的值而得到满足不同需要的权值;

步骤六、簇内节点构建最小生成树:根据步骤四得到的簇内节点构成的简单图模型和步骤五得到的权值,根据Prim最小生成树算法的定义构建簇内节点最小生成树;Prim最小生成树算法的定义为:假设E是连通图G=(V,E)上最小生成树中边的集合,其中V为传感器中的节点;

(1)、初始化:U={u0}(u0∈V),其中u0表示开始时选择的顶点,U是他们的集合,E={Φ},其中E表示选择的边的集合;

(2)、对于任意的u∈U,v∈V-U所构成的边(u,v)∈E,寻找一条权值最小的边(u0,v0),并加到E,同时将v0并入U;

(3)、假如U=V,则转(4),否则转到(2);

(4)、因此,在生成树T=(V,E)中,具有n-l条边构成边的集合E,则T为连通图G的最小生成树;

步骤七、簇内数据聚合:簇内节点的最小生成树构造完成后,传感器节点开始正常工作,从最低一级传感器节点开始,将收集的数据传给父节点,父节点将自己收集的数据和子节点传来的数据聚合后再传给自己的父节点,最终将聚合数据传输给簇头;

其中,父节点为在最小生成树中按照数据的传输方向汇聚数据的节点称为父节点,将数据传输给父节点的节点为子节点;

步骤八、簇头权值的计算:通过步骤三分簇完成后,簇头获得整个簇内节点的位置、节点剩余能量和传感器节点监测得到数据的大小信息,其中Ecir=E1r+E2r+…+Eir表示整个簇的剩余能量值,Kci表示簇头聚合的数据大小,Dij表示相邻簇头间的距离,对相邻两簇头i,j之间权值进行计算,权值的公式定义为:

Wij=b1(Ecir+Ecjr)+b2Dij+b3(Kci+Kcj)

其中,Ecjr和Kcj分别表示簇头j的剩余能量值和簇头j聚合的数据大小,且b1+b2+b3=1,系统根据系统对Ecir、Dij或Kci要求的比重不同调整bi的值而得到满足不同需要的权值;

步骤九、簇头节点构成简单图模型:将每个簇头当做图的一个顶点,相邻簇头之间用边相连接,每条边的权值由步骤八中的权值计算公式得到;

步骤十、簇头节点构建最小生成树:由步骤八给出的簇头节点构成的简单图模型后,根据Prim最小生成树算法的定义来构建最小生成树;

步骤十一、簇头数据聚合:簇头节点的最小生成树构造完成后,从最低一级簇头开始,将收集的数据传给父节点,父节点将自己聚合的数据和子节点传来的数据聚合后再传给自己的父节点,最终将聚合数据传输给基站;

步骤十二、均衡节点能耗:为了平衡节点能量的消耗,防止节点过快死亡,维持簇正常运行,每进行M轮以后,就重新选择簇头,然后重新进行前面的步骤,其中,节点的能耗可由LEACH能耗模型进行估算;

步骤十三、簇的维持:簇内节点死亡后,就会造成簇内的最小生成树路径失效,所以在节点即将死亡前,节点发送一个Die信息给簇头,表示自己即将死亡,簇头接收这一信息后,簇头就开始对簇内节点重新构建最小生成树;

所述的监控系统包括氧气集中取样单元、数据采集单元、远程数据传输装置、流量监控单元,所述氧气集中取样单元、所述远程数据传输装置均与所述综合配置箱电连接,所述数据采集单元控制所述氧气集中取样单元实时对氧气的纯度、一氧化碳的浓度、二氧化碳的浓度、一氧化氮的浓度、二氧化氮的浓度、二氧化硫、氧气露点及氧压力的参数进行不间断采样,并将采样数据以电信号的方式上传给所述数据采集单元进行数据运算、处理,并通过远程数据传输单元将数据进行远程传输至远程监护中心进行管理;

所述的情绪感知模块测量紧张情绪的紧张值T=k1×E1(HRV)+k2×E2(P)+k3×E3(R),其中,

k1+k2+k3=1;

E1(HRV)=φ(HRV)/H0,0<E1(HRV)<1;

φ(HRV)=HRV(t-2)+HRV(t-1)+HRV(t);

E2(P)=(P(t)-P(t-1))/P0,0<E2(P)<1;

E3(R)=(A–R(t))/A,0<E3(R)<1;

HRV、P和R分别代表心率变化值、血压值和表皮导电阻值,k1,k2,k3为加权系数,分别体现心率变化、血压和表皮导电性对情绪紧张程度度量值的贡献,E1(HRV)为根据心率变化计算出的情绪紧张程度,E2(P)为根据血压变化计算出的情绪紧张程度,E3(R)为根据皮肤导电性变化计算出的情绪紧张程度,t为当前时刻,t-1为当前时刻的前一时刻,t-2为当前时刻的前两时刻,φ(HRV)为t-2时刻、t-1时刻与当前时刻的心率变化值之和,HRV(t-2)为t-2时刻的心率变化值,HRV(t-1)为t-1时刻的心率变化值,HRV(t)为当前时刻的心率变化值,H0为被测对象正常情绪状态下的心率值,P(t)为当前时刻的血压值,P(t-1)为t-1时刻的血压值,P0为被测对象在正常情绪状态下的血压值,A为被测对象预先测量的皮肤电阻参考值,R(t)为当前时刻皮肤电阻值;

所述的流量监控单元包括测量管、内设空腔的传感器安装管和外部温差补偿模块,所述传感器安装管的下端插入到测量管内部,所述传感器安装管的下端朝向气体流动方向设置有第一传感器,所述传感器安装管的空腔内设置有第二传感器,所述第一传感器和第二传感器电性连接于外部温差补偿模块;

所述的第二传感器输出一个与流体的流速相应的信号;

所述的外部温差补偿模块内的温度测量装置,用来测量流体的温度,并输出与温度相应的信号;

所述外部温差补偿模块用于将第二传感器测定的流体的温度变化造成的流速的测量误差调整到一个与流速无关的恒定比率,并单一校正流体温度变化造成的流体测量值,使之与流速无关,输入所述气体流量计的输出信号和所述温度测量装置的输出信号,并根据温度信号补偿由于热电型流量测定仪的流体温度变化造成的流速测量误差。

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于青岛大学附属医院,未经青岛大学附属医院许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/201610073819.X/1.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top