[发明专利]一种融合句义信息的事件关系强度图构建方法有效

专利信息
申请号: 201610124157.4 申请日: 2016-03-04
公开(公告)号: CN105740238B 公开(公告)日: 2019-02-01
发明(设计)人: 罗森林;吴舟婷;潘丽敏;陈倩柔;邹丽丽 申请(专利权)人: 北京理工大学
主分类号: G06F17/27 分类号: G06F17/27
代理公司: 暂无信息 代理人: 暂无信息
地址: 100081 北京市*** 国省代码: 北京;11
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 一种 融合 信息 事件 关系 强度 构建 方法
【说明书】:

发明涉及一种融合句义信息的事件关系强度图构建方法。首先基于汉语句义结构理论,提取句子语义信息,扩充事件的特征维度,并利用改进的TF‑IDF方法完成事件向量表达,再结合上下文信息和核心事件信息优化事件向量,最后利用LDA方法获取事件之间关系强度,设定合适的关系强度阈值,构建事件关系强度图。本发明通过融合句义信息,提供了一种将孤立分散的事件以一种可度量形式关联起来的方法,并通过事件关系强度图直观展示事件间的关系,准确的定位核心事件,有力支撑后续基于事件关系的自动文摘、舆情预测等自然语言处理应用。

技术领域

本发明涉及一种融合句义信息的事件关系强度图构建方法,属于计算机科学及自然语言处理的信息抽取领域。

背景技术

事件是指在某个特定时间和地点发生的,由一个或多个角色参与的,由一个或多个动作组成的一件事情。随着移动互联网技术的迅速发展,事件发生后,尤其是突发事件,会快速涌现出大量与之相关的新闻报道、微博评论以及博客等文本。由于事件固有的时间、地点、人物、起因、经过、结果等属性,其发生往往不是孤立的,而是会与其它事件存在不同程度的相互关系,通常用关系强度来度量。为了从大量的文本中,快速准确地定位相互关联的事件,需要基于事件间的关系强度构建事件关系强度图,从而为自动文摘、舆情预测等自然语言应用提供有效支撑。

目前,针对事件关系识别的研究主要有模式匹配法、元素和位置分析法以及规则推理法。

模式匹配法是事件关系检测的主要方法之一,主要是借助事件特征项指导模式的建立。触发词是事件的核心,直接表明事件的发生,是决定事件类别的最主要特征。根据事件触发词之间的关系,人工定义模板,抽取文本中符合模板的事件关系。事件关系检测的模式匹配方法,往往通过对事件触发词间的关系进行研究,借助触发词间的关系,制定相应的模式,辅助事件间关系的识别。

元素和位置分析法,事件元素是事件的重要组成部分,事件元素给出了事件的参与者,时间、地点等信息。每个事件包含特定的事件元素信息,且相关事件之间往往共享某一个或者某几个事件元素。事件位置能表明事件发生的上下文环境,相关的事件在文本也以较大的概率先后出现。因此位置和事件元素在事件关系的识别中扮演着重要的角色。基于位置和元素的事件关系检测方法,即是将事件位置和元素信息作为重要线索识别事件之间关系的方法。

规则推理法主要是基于Allen的“区间代数”算法构建推理规则,如“if-then”这类规则,实现事件关系自动推理;或是对规则进行扩展,训练有效的分类器,对事件关系进行分类。如Mani和Tatu的事件时序关系识别系统。

现有方法可总结为如下两个方面:①不给出具体的关系类型,围绕事件关系检测任务对事件之间逻辑关系进行有无的判断。但是,这类方法仅对事件浅层逻辑关系进行识别,不能深入到事件内部的语义联系,如关系类型或联系紧密度,离实际应用还有一定的差距。②从分类关系中的某一特定类型关系出发,主要以因果关系和时序关系为主。但是,这类方法存在如下问题:首先,仅对某一特定类型的事件关系进行研究,不具有普适性和全面性。其次,在事件关系定义方面,这些方法仅对事件关系进行了初步的定义和类别划分,但尚未形成事件关系的统一定义。同时,也没有比较完整的事件关系标注语料做支撑,这使得该类方法在全面识别事件关系中面临较大的困难。

因此,现有的基于类型识别的事件关系强度计算方法效果并不理想,构建的事件强度关系图难以应用推广。

发明内容

本发明为解决关系类型识别效果差、事件关系强度图准确性不高的问题,提出一种融合句义信息的事件关系强度图构建方法。利用汉语语义学的句义结构理论挖掘事件之间的内在语义关系,扩充事件特征维度,建立事件向量模型,直接利用向量计算衡量事件间关联关系的强弱,进而构建事件关系强度图,实现事件关联关系的可视化。

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于北京理工大学,未经北京理工大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/201610124157.4/2.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top