[发明专利]一种低温制备粉体-TiO2光诱导超亲水复合薄膜的方法有效
申请号: | 201610134005.2 | 申请日: | 2016-03-09 |
公开(公告)号: | CN105771952B | 公开(公告)日: | 2018-10-26 |
发明(设计)人: | 黄宇;刘燕;王震宇;曹军骥 | 申请(专利权)人: | 中国科学院地球环境研究所 |
主分类号: | B01J23/06 | 分类号: | B01J23/06;B01J23/30;B01J27/232;B01J27/24;B01J37/04;B01J37/34 |
代理公司: | 西安通大专利代理有限责任公司 61200 | 代理人: | 安彦彦 |
地址: | 710061*** | 国省代码: | 陕西;61 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 一种 低温 制备 tio sub 光诱导 超亲水 复合 薄膜 方法 | ||
一种低温制备粉体‑TiO2光诱导超亲水复合薄膜的方法,在冰水浴条件下,将盐酸、H2O、钛酸四丁酯按体积比(0.6~1.3):100:10混合,搅拌反应2h,室温陈化,得到TiO2溶胶;将粉体光催化材料加入到溶剂中,超声分散均匀后得到粉体材料的微溶胶;将TiO2溶胶与粉体光催化材料的微溶胶混合,分散均匀,得到粉体‑TiO2混合溶胶;在80℃的载体基底上喷涂粉体‑TiO2混合溶胶,采用喷涂法镀膜,然后室温干燥。本发明制备得粉体‑TiO2复合薄膜干燥后未出现掉粉,具有良好的附着力;薄膜表现出良好的光诱导超亲水性,且透光率较高;镀膜方法操作简单,工艺条件温和,成本较低,易于工业化生产及应用。
技术领域
本发明属于光催化薄膜制备及应用领域,涉及一种低温制备粉体-TiO2光诱导超亲水复合薄膜的方法。
背景技术
纳米光催化技术是一种新型的环境治理方法,通过太阳能激发半导体光催化材料,产生活性自由基,对环境中的有毒有害物质进行高效的降解去除,在大气污染控制方面具有巨大的应用潜力。与传统的物理吸附法(活性炭)相比,利用纳米光催化技术净化空气具有以下几方面的优势:催化降解反应可以在常温常压下进行;操作简便;在太阳光的激发下,能有效去除大气中的NO,不会造成二次污染。
光催化剂在环境治理的应用中,主要以光催化薄膜为主。目前,光催化薄膜的制备方法主要是溶胶凝胶法,且大部分制备过程需要经过高温后处理,使得工业化难以实现。中国发明专利CN 102864481 A公布了一种二氧化钛光催化薄膜及其制备方法,采用磁控溅射技术在基体上溅射沉积的二氧化钛薄膜,需要经过400℃~500℃保温处理120min~250min。中国发明专利CN 102513129 A公布了一种光催化TiO2/Cu2O复合薄膜的制备方法中,TiO2薄膜在 400℃~700℃条件下进行热处理。中国发明专利CN 104624212 A公布了一种增强纳米银/二氧化钛复合薄膜光催化性能的方法中,采用真空电子枪蒸发镀膜制备的TiO2薄膜,在450℃下空气氛围中退火处理2h。上述制备过程均需要经过高温后处理,使得工业化难以实现。此外,很多光催化剂无法实现采用溶胶凝胶法制备成光催化薄膜,只能获得其粉体材料。因此,实现低温制备工艺和粉体光催化剂的应用成为两大难题。
发明内容
本发明目的在于提供一种低温制备粉体-TiO2光诱导超亲水复合薄膜的方法,在低温条件下,将粉体材料成功负载在载体基底上,制备成了复合薄膜,解决了粉体材料应用困难的问题,该方法制备得粉体-TiO2复合薄膜干燥后未出现掉粉,具有良好的附着力;薄膜表现出良好的光诱导超亲水性,且透光率较高;镀膜方法操作简单,工艺条件温和,成本较低,易于工业化生产及应用。
为了实现上述目的,本发明采用如下的技术方案:
一种低温制备粉体-TiO2光诱导超亲水复合薄膜的方法,包括以下步骤:
(1)粉体光催化材料微溶胶的制备:
将粉体光催化材料加入到溶剂中,超声分散均匀后得到粉体材料的微溶胶;其中,粉体光催化材料的尺寸在1nm~2μm之间,粉体光催化材料与溶剂的比为(1~5)mg:(1~10)mL;
(2)粉体-TiO2混合溶胶的制备:
将TiO2溶胶与粉体光催化材料的微溶胶按体积比1:6~6:1混合,超声分散均匀,得到粉体-TiO2混合溶胶;
(3)复合薄膜的低温制备:
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于中国科学院地球环境研究所,未经中国科学院地球环境研究所许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201610134005.2/2.html,转载请声明来源钻瓜专利网。
- 纳米TiO<sub>2</sub>复合水处理材料及其制备方法
- 具有TiO<sub>2</sub>致密层的光阳极的制备方法
- 一种TiO<sub>2</sub>纳米颗粒/TiO<sub>2</sub>纳米管阵列及其应用
- 基于TiO2的擦洗颗粒,以及制备和使用这样的基于TiO2的擦洗颗粒的方法
- 一种碳包覆的TiO<sub>2</sub>材料及其制备方法
- 一种应用于晶体硅太阳电池的Si/TiO<sub>x</sub>结构
- 应用TiO<sub>2</sub>光触媒载体净水装置及TiO<sub>2</sub>光触媒载体的制备方法
- 一种片状硅石/纳米TiO2复合材料及其制备方法
- TiO<base:Sub>2
- TiO
- 一种Nd<sub>2</sub>O<sub>3</sub>-Yb<sub>2</sub>O<sub>3</sub>改性的La<sub>2</sub>Zr<sub>2</sub>O<sub>7</sub>-(Zr<sub>0.92</sub>Y<sub>0.08</sub>)O<sub>1.96</sub>复相热障涂层材料
- 无铅[(Na<sub>0.57</sub>K<sub>0.43</sub>)<sub>0.94</sub>Li<sub>0.06</sub>][(Nb<sub>0.94</sub>Sb<sub>0.06</sub>)<sub>0.95</sub>Ta<sub>0.05</sub>]O<sub>3</sub>纳米管及其制备方法
- 磁性材料HN(C<sub>2</sub>H<sub>5</sub>)<sub>3</sub>·[Co<sub>4</sub>Na<sub>3</sub>(heb)<sub>6</sub>(N<sub>3</sub>)<sub>6</sub>]及合成方法
- 磁性材料[Co<sub>2</sub>Na<sub>2</sub>(hmb)<sub>4</sub>(N<sub>3</sub>)<sub>2</sub>(CH<sub>3</sub>CN)<sub>2</sub>]·(CH<sub>3</sub>CN)<sub>2</sub> 及合成方法
- 一种Bi<sub>0.90</sub>Er<sub>0.10</sub>Fe<sub>0.96</sub>Co<sub>0.02</sub>Mn<sub>0.02</sub>O<sub>3</sub>/Mn<sub>1-x</sub>Co<sub>x</sub>Fe<sub>2</sub>O<sub>4</sub> 复合膜及其制备方法
- Bi<sub>2</sub>O<sub>3</sub>-TeO<sub>2</sub>-SiO<sub>2</sub>-WO<sub>3</sub>系玻璃
- 荧光材料[Cu<sub>2</sub>Na<sub>2</sub>(mtyp)<sub>2</sub>(CH<sub>3</sub>COO)<sub>2</sub>(H<sub>2</sub>O)<sub>3</sub>]<sub>n</sub>及合成方法
- 一种(Y<sub>1</sub>-<sub>x</sub>Ln<sub>x</sub>)<sub>2</sub>(MoO<sub>4</sub>)<sub>3</sub>薄膜的直接制备方法
- 荧光材料(CH<sub>2</sub>NH<sub>3</sub>)<sub>2</sub>ZnI<sub>4</sub>
- Li<sub>1.2</sub>Ni<sub>0.13</sub>Co<sub>0.13</sub>Mn<sub>0.54</sub>O<sub>2</sub>/Al<sub>2</sub>O<sub>3</sub>复合材料的制备方法