[发明专利]一种基于掺铒微纳光纤环形结激光器的检测系统及方法有效
申请号: | 201610141885.6 | 申请日: | 2016-03-11 |
公开(公告)号: | CN105699328B | 公开(公告)日: | 2018-08-10 |
发明(设计)人: | 王朋朋;王仁德;朱存光;王光伟;陶雪辰;郑志丽;孟双双;崔婷婷 | 申请(专利权)人: | 济南大学 |
主分类号: | G01N21/39 | 分类号: | G01N21/39 |
代理公司: | 济南圣达知识产权代理有限公司 37221 | 代理人: | 张勇 |
地址: | 250022 山东*** | 国省代码: | 山东;37 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 一种 基于 掺铒微纳 光纤 环形 激光器 检测 系统 方法 | ||
本发明公开了一种基于掺铒微纳光纤环形结激光器的检测系统及方法,该激光器为掺铒微纳光纤环形结激光器,所述激光器由掺铒的微纳光纤作有源介质,环形结作为谐振腔;所述掺铒的微纳光纤为由一块掺铒块状玻璃借用蓝宝石光纤通过直接拉伸法拉制而成;所述掺铒微的纳光纤制成为环形结;将微纳光纤的强倏逝波场置于光纤激光器谐振腔中,检测灵敏度可以提高几个数量级,实现了激光输出与传感一体化。
技术领域
本发明涉及光纤激光传感检测技术领域,尤其涉及一种基于掺铒微纳光纤环形结激光器的检测系统及方法。
背景技术
痕量气体检测技术在环境保护、化工生产、资源开采、食品包装等众多行业和领域存在广泛的应用需求,如何对有毒、有害、易燃、易爆气体进行准确、快速检测已成为急需解决的重要问题之一。工业文明和城市发展,在为人类创造巨大财富的同时也把数十亿吨计的废气和废物排入大气之中,人类赖以生存的大气圈却成了空中垃圾库和毒气库。发展对工业烟尘、汽车尾气等主要空气污染物的检测预警技术是有效治理大气污染的一个先驱条件。另外在煤炭油气等矿产资源的开采过程中,设计新型智能的气体传感器以实现快速准确的在线监测能有效的避免因可燃气体泄漏而引起的火灾、爆炸、中毒等人身伤亡事故和财产损失。
光纤气体传感器以本征安全、抗电磁干扰、耐高温高压,易远程传输和复用等优势越来越受到研究人员的重视。倏逝波型光纤气体传感器是利用待测气体与光纤中传输光场的相互作用来实现气体传感的一种新型传感器。与其它光纤气体传感器相比,具有结构相对简单、成本较低、可交叉分辨和形成分布式传感等优点。微纳光纤的出现为倏逝波型气体传感器提供了巨大的发展空间。作为较为特殊的光纤种类,微纳光纤不仅具有常规光纤的基本光纤性能,还有高机械强度、强约束能量、大倏逝场等特殊光学特性:虽然微纳光纤的直径尺度很小,其机械强度却很高,实验表明,直径为200nm微纳光纤的极限抗拉强度可达10GPa;微纳光纤对光场的约束能力强,可实现微米量级弯曲,制作更小尺度的波导器件;由于微纳光纤直径与传输光波尺度相当,在传输过程中有相当部分能量以倏逝场形式存在于纤芯物理边界之外,计算表明,对于二氧化硅材料微纳光纤,当归一化频率为2.4时,有19%的光能量存在于光纤边界之外,当归一化频率为1时,约有94%的光能量以倏逝场形式传输;与外界环境发生相互作用时,可以用来构建超紧凑的传感器。
微纳光纤的制备技术以及微纳光纤激光器的制作技术已经发展的相对成熟,Optics Express,vol.14(12),pp.5055-5060,2006,Shi L,Chen X F,Liu H J,et al.“Fabrication of submicron-diameter silica fibers using electric stripheater,”提出利用电加热金属条作为熔融光纤热源的方法,获得了长达10cm且直径小于1μm的微纳光纤;Applied Physics Letters,89:143513,2006,Xiaoshun Jiang,Qing Yang,Guillaume Vienne,et al,“Demonstration of microfiber knot laser,”提出利用直接拉伸法,由铒镱共掺块状玻璃拉制微纳光纤并构成结型微纳光纤谐振腔,实验表明,该微纳光纤环形结激光器可实现单纵模输出,线宽小于0.05nm,且当泵浦功率为12.8mW时,输出激光功率达到8mW。但是到目前为止,有关基于微纳光纤的气体传感器方面的研究报道较少,最主要原因是由于微纳光纤的拉制长度不够长,作为倏逝波型气体传感器使用时吸收路径较短,探测灵敏度受到限制。
内腔式光谱吸收技术,即激光内腔检测技术,是将气体传感单元置于激光器谐振腔中,通过调节增益,使得腔内总损耗很小。由于光可以在低损耗谐振腔内来回传输,这样光可以通过气体传感单元很多次,相当于大大增加了有效吸收路径,气体吸收的探测灵敏度也会提高几个数量级。内腔式光谱吸收技术是解决微纳光纤气体传感器的吸收路径较短、探测灵敏度不够的重要技术方案。因此,亟需一种新的有源气体检测装置实现两种技术的优势互补。
发明内容
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于济南大学,未经济南大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201610141885.6/2.html,转载请声明来源钻瓜专利网。