[发明专利]基于楔角电光晶体的剩余幅度调制稳定装置有效
申请号: | 201610142723.4 | 申请日: | 2016-03-14 |
公开(公告)号: | CN105576495B | 公开(公告)日: | 2019-01-29 |
发明(设计)人: | 毕进;李刘锋;王佳;陈李生 | 申请(专利权)人: | 中国科学院武汉物理与数学研究所 |
主分类号: | H01S3/13 | 分类号: | H01S3/13;G02F1/03 |
代理公司: | 武汉宇晨专利事务所 42001 | 代理人: | 黄瑞棠 |
地址: | 430071*** | 国省代码: | 湖北;42 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 基于 电光 晶体 剩余 幅度 调制 稳定 装置 | ||
本发明公开了一种基于楔角电光晶体的剩余幅度调制稳定装置,涉及激光稳频技术领域。本装置是:激光器、起偏器、电光晶体、检偏器和偏振分光棱镜依次排列组成光路部分;信号源、铜箔、电光晶体、铜块、热电制冷片和热沉依次连接组成电光相位调制部分;信号源、移相器和混频器的本地端依次连接获得解调所需的本地振荡信号;偏振分光棱镜的垂直偏振光、光电探测器和混频器的射频端依次连通获得射频信号;混频器的中频端和数字万用表连接获得剩余幅度调制信号;所述的电光晶体为一种有楔角的铌酸锂晶体,通光面与光轴方向成75度夹角。本装置结构简单,稳定性高,易于实现,可应用于高稳定激光、激光干涉、引力波观测、激光光谱学和光频标等精密测量领域。
技术领域
本发明涉及激光稳频技术领域,尤其涉及一种基于楔角电光晶体的剩余幅度调制稳定装置。
背景技术
在采用高稳定激光精密测量的研究和技术应用中,比如光谱学、光频标和引力波观测这一类精密测量研究中,相位调制和光电探测是最常用的高灵敏度光电探测技术。而电光相位调制是相位调制中最常用的手段之一。而许多物理效应和环境因素的改变都不可避免地在电光相位调制过程中产生剩余幅度调制,进而影响测量的稳定性和准确度。例如在频率调制光谱中,剩余幅度调制效应会造成光谱线型畸变,降低光谱测量的灵敏度;在激光干涉仪中剩余幅度调制的波动会直接降低测量的稳定性。
降低剩余幅度调制的手段主要分为两类:被动地稳定剩余幅度调制和对其进行主动控制。被动的方式一般会通过稳定电光相位调制器乃至整个系统所处的环境参数如温度、气压等,降低气流、振动和声音对系统光路指向的影响。但是对较高灵敏度的探测来说,目前采用的被动方式一般很难满足要求。于是,为了降低剩余幅度调制对测量精度的影响,也会在被动稳定的同时结合主动反馈控制的方式。然而主动控制需要额外加入光学或者电学元件以实现反馈控制,这种方式必然会增加整个测量系统的复杂程度,降低系统的可靠性,不适合小型化应用。
发明内容
本发明的目的就在于克服现有技术存在的缺点和不足,提供一种基于楔角电光晶体的剩余幅度调制稳定装置。要求有效抑制剩余幅度调制,且结构简单、易于实现,对环境因素的影响也不敏感。
本发明的目的是这样实现的:
采用通光面具有楔角的电光晶体,通过对电光晶体控温被动地稳定相位调制过程中产生的剩余幅度调制;这种有楔角的电光晶体能将晶体双折射产生的水平偏振光(o光)和垂直偏振光(e光)从空间上分开,从而大幅度消减双折射引入的剩余幅度调制,而且由于电光晶体前后两个通光面做出了较大的楔角,能够有效避免电光晶体自身引入的寄生标准具效应,这种寄生标准具效应也是剩余幅度调制的主要来源之一。
具体地说,本装置的结构是:
激光器、起偏器、电光晶体、检偏器和偏振分光棱镜依次排列组成光路部分;
信号源、铜箔、电光晶体、铜块、热电制冷片和热沉依次连接组成电光相位调制部分;
信号源、移相器和混频器的本地端依次连接获得解调所需的本地振荡信号;
偏振分光棱镜的垂直偏振光、光电探测器和混频器的射频端依次连通获得射频信号;
混频器的中频端和数字万用表连接获得剩余幅度调制信号;
所述的电光晶体为一种有楔角的铌酸锂晶体,通光面与光轴方向成75度夹角。
本发明具有以下优点和积极效果:
①结构简单,对电光晶体的加工要求容易实现;
②不需要额外增加反馈控制环路,电路系统简单;
③利用两块反射镜让出射光的方向相对于入射光的方向不发生改变,使得光路变得紧凑;
④电光晶体前后两个通光面做出了较大的楔角,使得从电光出射的o光和e光在空间上分开的角度较大;
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于中国科学院武汉物理与数学研究所,未经中国科学院武汉物理与数学研究所许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201610142723.4/2.html,转载请声明来源钻瓜专利网。