[发明专利]一种多分辨率障碍物环境下移动机器人混合路径规划方法有效

专利信息
申请号: 201610278237.5 申请日: 2016-04-29
公开(公告)号: CN105717929B 公开(公告)日: 2018-06-15
发明(设计)人: 尹全军;彭勇;秦龙;焦鹏;张琪;杨伟龙;孙林 申请(专利权)人: 中国人民解放军国防科学技术大学
主分类号: G05D1/02 分类号: G05D1/02
代理公司: 湖南兆弘专利事务所(普通合伙) 43008 代理人: 赵洪
地址: 410073 湖*** 国省代码: 湖南;43
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 环境建模 全局路径 避障 移动机器人 障碍物环境 规划 多分辨率 混合路径 移动机器人运动 预估 最小安全距离 粒子群搜索 人工势场法 局部动态 全局规划 非均匀 极坐标 能力强 障碍物 自适应 避碰 极径 建模 输出 全局 改进 安全
【说明书】:

发明公开了一种多分辨率障碍物环境下移动机器人混合路径规划方法,目的是解决现有方法初始规划存在盲目性、环境建模缺乏灵活性、实时避障能力差的问题。技术方案是采用自适应非均匀极径的极坐标建模方法对移动机器人运动空间进行环境建模;采用重力粒子群搜索方法规划出从起点到终点的初始全局路径;根据初始全局路径,采用改进的人工势场法,通过预估最小安全距离和安全避碰角,进行局部动态避障,依次到达各初始全局路径点;到达规划终点则输出最终的全局无碰路径。采用本发明能有效改善初始全局规划的盲目性和环境建模灵活性,对动态未知障碍物的实时避障能力强,方法的速度快、精度高、适应性强。

技术领域

本发明涉及移动机器人技术领域,尤其是一种静态、动态障碍物并存,且障碍物分布具有多分辨率特点的复杂情况下的移动机器人混合路径规划方法。

背景技术

路径规划技术一直是智能移动机器人研究的核心内容之一,其要求机器人根据预先获知或自身传感器对环境的感知信息,自行规划出一条从起点到终点,满足一定准则(路径长度最短等)的无碰安全路径。高效、可靠的路径规划技术是机器人完成具体任务的前提和基本要求。

根据环境信息获取程度不同,路径规划方法可分为依靠先验已知信息的全局规划方法和依靠局部感知信息的局部规划方法。在一些大规模地图范围的路径规划任务中,障碍物环境往往具有多分辨率特点:即环境中障碍物分布疏密程度差异大、存在一些预知的典型障碍物,如通过卫星地图等获知的固定建筑等,局部还存在未探明的小的静态或动态障碍物。此时传统的全局规划算法,如自由空间法等根据地图几何特征搜索路径的方法,以及粒子群算法、启发式A*等智能算法,无法处理未知的静态或动态障碍物,而局部规划算法,如人工势场法、滚动窗口法等,由于缺乏已知全局信息的引导,往往计算复杂或易陷入局部死循环。因而,采用全局路径规划和实时局部避障相结合的混合路径规划方法是满足移动机器人高效、可靠、实时需求的。

环境建模是机器人进行全局路径规划的前提,其与路径规划的算法效率紧密相关。常用的环境建模方法包括栅格法、链接图法、等分坐标变换法等,然而这些方法在针对多分辨率的障碍物环境中缺乏灵活适应性:栅格法需要根据最小的障碍物确定栅格的划分,造成极大的计算资源浪费;链接图法根据障碍物顶点生成的网状链接图需要经过复杂处理才能定义种群的搜索空间;等分坐标变换法以等分始末点连线的垂线确定种群的搜索空间时,很难兼顾路径解最优性与计算资源的平衡,在障碍物稀疏处搜索空间太大浪费计算资源,障碍物密集处离散化的搜索空间太小难以规划出最优路径。

粒子群算法是解决机器人全局路径规划最常用的算法之一,它是由Kennedy和Eberhart 两位博士根据自然界鸟群觅食的行为特点首次在1995年的国际会议“IEEEInterational Conference on Neural Network”中的“Particle Swarm Optimization”(粒子群优化)一文中提出的一种智能搜索算法。粒子群中的每个粒子代表一个路径解,粒子的维数代表路径点的个数。粒子在搜索空间内展开随机搜索,计算每个粒子所代表路径解的评价指标(如路径长度等),选出粒子群中指标最优(长度最短、安全系数最高等)的粒子来更新每个粒子的历史最优路径解和粒子群的全局最优路径解,以此引导当前粒子快速收敛到满足路径指标要求的最优路径解。其具有结构简单、参数易调节的优点,但其仍存在容易过早收敛到非最优路径解的不足。

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于中国人民解放军国防科学技术大学,未经中国人民解放军国防科学技术大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/201610278237.5/2.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top