[发明专利]一种平坦光谱输出的中红外超连续谱激光实现方法有效
申请号: | 201610307173.7 | 申请日: | 2016-05-11 |
公开(公告)号: | CN105790053B | 公开(公告)日: | 2018-08-14 |
发明(设计)人: | 万雄;刘鹏希;章婷婷 | 申请(专利权)人: | 中国科学院上海技术物理研究所 |
主分类号: | H01S3/067 | 分类号: | H01S3/067;H01S3/0941;H01S3/10;H01S3/13 |
代理公司: | 上海新天专利代理有限公司 31213 | 代理人: | 郭英 |
地址: | 200083 *** | 国省代码: | 上海;31 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 一种 平坦 光谱 输出 红外 连续谱 激光 实现 方法 | ||
1.一种平坦光谱输出的中红外超连续谱激光实现方法,该方法是在平坦输出中红外超连续谱激光器上实现的,所述的超连续谱激光器包括主控制器(1)、泵浦源模组(2)、频率控制器(3)、第一脉冲发生器(4)、第一整形放大器(5)、第一激光二极管(6)、第一场效应管(7)、第一场效应管驱动电路(8)、第二脉冲发生器(9)、第二整形放大器(10)、第二激光二极管(11);第二场效应管(12)、第二场效应管驱动电路(13)、第三脉冲发生器(14)、第三整形放大器(15)、第三场效应管驱动电路(16)、第三场效应管(17)、第三激光二极管(18)、三合一光纤(19)、第一偏振控制器(20)、光隔离器(21)、环形激光器模组(22)、第一负GVD光纤(23)、第一波分复用器(24)、第四偏振控制器(25)、法拉第光隔离器(26)、第三偏振控制器(27)、掺镱光纤放大器(28)、第二波分复用器(29)、第二负GVD光纤(30)、第二偏振控制器(31)、超连续谱产生及监测模组(32)、ZBLAN光纤耦合器(33)、ZBLAN光纤(34)、中红外一进二出光纤(35)、输出接口(36)、宽谱段光谱仪(37)、四合一光耦合器(38)、第一半导体激光器(39)、第二半导体激光器(40)、第三半导体激光器(41)、第一激光管驱动电路(42)、第二激光管驱动电路(43)、第三激光管驱动电路(44)、环形腔(45)、功率控制器(46)、第一半导体激光器功率放大器(47)、第二半导体激光器功率放大器(48)、第三半导体激光器功率放大器(49);其特征在于飞秒级平坦光谱输出的中红外超连续谱激光获取方法步骤如下:
1)根据ZBLAN光纤的零色散波长λ0,求出其对应的频率f0;设定频率差Δf,设定频率f1=f0+Δf,求出其对应的波长λ1;类似地,设定频率f2=f0-Δf,求出其对应的波长λ2;
2)选择第一激光二极管及第一半导体激光器的工作波长为λ0;选择第二激光二极管及第二半导体激光器的工作波长为λ1;选择第三激光二极管及第三半导体激光器的工作波长为λ2;
3)主控制器发出控制指令给频率控制器,频率控制器将第一脉冲发生器、第二脉冲发生器及第三脉冲发生器三者的脉冲频率设定为相同的初始值F1=F2=F3,并使之启动工作;
4)主控制器发出控制指令启动宽谱段光谱仪、第一半导体激光器、第二半导体激光器、第三半导体激光器;
5)主控制器发出控制指令给功率控制器,功率控制器将第一半导体激光器功率放大器、第二半导体激光器功率放大器、第三半导体激光器功率放大器的放大倍数设定一个相同的初始值A1=A2=A3;
6)第一脉冲发生器发出的频率为F1的电脉冲经第一整形放大器首先进行脉冲整形,调节高电平占空比,形成纳秒级的频率为F1的电脉冲,经功率放大后,送入第一激光管驱动电路中的第一场效应管驱动电路中的场效应管驱动芯片的控制引脚,场效应管驱动芯片的输出引脚产生频率为F1的纳秒级脉冲信号用于控制高速大功率第一场效应管的导通和截止,用于控制第一激光二极管放电回路的充放电,使第一激光二极管产生重频为F1的纳秒级脉冲种子激光;
类似地,第二脉冲发生器发出的频率为F2的电脉冲经第二整形放大器首先进行脉冲整形,调节高电平占空比,形成纳秒级的频率为F2的电脉冲,经功率放大后,送入第二激光管驱动电路中的第二场效应管驱动电路中的场效应管驱动芯片的控制引脚,场效应管驱动芯片的输出引脚产生频率为F2的纳秒级脉冲信号用于控制高速大功率第二场效应管的导通和截止,用于控制第二激光二极管放电回路的充放电,使第二激光二极管产生重频为F2的纳秒级脉冲种子激光;
类似地,第三脉冲发生器发出的频率为F3的电脉冲经第三整形放大器首先进行脉冲整形,调节高电平占空比,形成纳秒级的频率为F3的电脉冲,经功率放大后,送入第三激光管驱动电路中的第三场效应管驱动电路中的场效应管驱动芯片的控制引脚,场效应管驱动芯片的输出引脚产生频率为F3的纳秒级脉冲信号用于控制高速大功率第三场效应管的导通和截止,用于控制第三激光二极管放电回路的充放电,使第三激光二极管产生重频为F3的纳秒级脉冲种子激光;
7)三束波长分别为λ0、λ1、λ2的脉冲种子激光经三合一光纤耦合进光纤中,再经第一偏振控制器及光隔离器传输进入环形激光器模组;第一偏振控制器及光隔离器的作用是消除环形激光器模组可能产生的回波干扰;
8)环形激光器模组中的第一半导体激光器,发射的波长为λ0连续泵浦激光束经第一半导体激光器功率放大器倍数A1的功率放大后,经过四合一光耦合器两等分后以两个方向进入环形腔,分别经过第一波分复用器与第二波分复用器之后,从两个方向泵浦掺镱光纤放大器;泵浦源模组输出的波长为λ0的纳秒级脉冲种子激光经过掺镱光纤放大器进行功率放大,同时该纳秒级脉冲激光先经过第一负GVD光纤,脉冲得到了压缩,由于掺镱光纤放大器具有正GVD,所以该纳秒脉冲经过了拉伸,再经过第二负GVD光纤后,脉冲得到了再次压缩,在环形腔内进行啁啾(chirp)补偿;第三偏振控制器、法拉第光隔离器及第四偏振控制器组成一个共振器,利用非线性偏振旋转效应,形成等效可饱和吸收体,再利用光纤中的非线性双折射效应,基于非线性双折射光纤中的自锁模机制产生超短飞秒级激光脉冲,并使环形腔中的激光沿单向传输,通过第二偏振控制器输出大功率波长为λ0的飞秒级脉冲激光至超连续谱产生及监测模组;
同时,环形激光器模组中的第二半导体激光器,发射的波长为λ1连续泵浦激光束经第二半导体激光器功率放大器倍数A2的功率放大后,经过四合一光耦合器两等分后以两个方向进入环形腔,分别经过第一波分复用器与第二波分复用器之后,从两个方向泵浦掺镱光纤放大器;泵浦源模组输出的波长为λ1的纳秒级脉冲种子激光经过掺镱光纤放大器进行功率放大,同时该纳秒级脉冲激光先经过第一负GVD光纤,脉冲得到了压缩,由于掺镱光纤放大器具有正GVD,所以该纳秒脉冲经过了拉伸,再经过第二负GVD光纤后,脉冲得到了再次压缩,在环形腔内进行啁啾补偿;基于非线性双折射光纤中的自锁模机制产生超短飞秒级激光脉冲,并使环形腔中的激光沿单向传输,通过第二偏振控制器输出大功率波长为λ1的飞秒级脉冲激光至超连续谱产生及监测模组;
类似地,在相同时间,环形激光器模组中的第三半导体激光器,发射的波长为λ2连续泵浦激光束经第三半导体激光器功率放大器倍数A3的功率放大后,经过四合一光耦合器两等分后以两个方向进入环形腔,分别经过第一波分复用器与第二波分复用器之后,从两个方向泵浦掺镱光纤放大器;泵浦源模组输出的波长为λ2的纳秒级脉冲种子激光经过掺镱光纤放大器进行功率放大,同时该纳秒级脉冲激光先经过第一负GVD光纤,脉冲得到了压缩,由于掺镱光纤放大器具有正GVD,所以该纳秒脉冲经过了拉伸,再经过第二负GVD光纤后,脉冲得到了再次压缩,在环形腔内进行啁啾补偿;利用光纤中的非线性双折射效应,基于非线性双折射光纤中的自锁模机制产生超短飞秒级激光脉冲,并使环形腔中的激光沿单向传输,通过第二偏振控制器输出大功率波长为λ2的飞秒级脉冲激光至超连续谱产生及监测模组;
9)环形激光器模组输出的波长分别为λ0、λ1、λ2的飞秒级脉冲激光进入连续谱产生及监测模组中,通过ZBLAN光纤耦合器进入ZBLAN光纤后,在ZBLAN光纤中由于各阶各类型的非线性效应,形成分别以λ0、λ1、λ2为中心的光谱展宽,其展宽的宽度及强度与λ0、λ1、λ2的飞秒级脉冲激光的功率与重频相关,三个展宽的光谱相互叠加,形成中红外飞秒级超连续谱脉冲激光;
10)飞秒级超连续谱脉冲激光通过中红外一进二出光纤后分成两路,一路通过输出接口输出;另一路进入宽谱段光谱仪进行监测,其超连续谱监测结果传送至主控制器;
11)主控制器对超连续谱监测结果进行分析,评价其光谱平坦性,同时生成新的功率放大倍数A1、A2、A3,新的重频F1、F2、F3;并发出控制指令给功率控制器与频率控制器,将这六个新参数分别赋予第一半导体激光器功率放大器、第二半导体激光器功率放大器、第三半导体激光器功率放大器、第一脉冲发生器、第二脉冲发生器及第三脉冲发生器;
12)不断重复步骤6)至11),直到超连续谱监测结果满足平坦性要求;至此,将最新的A1、A2、A3、F1、F2、F3固定,最终实现高输出光谱平坦度及稳定性的中红外超连续谱激光输出。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于中国科学院上海技术物理研究所,未经中国科学院上海技术物理研究所许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201610307173.7/1.html,转载请声明来源钻瓜专利网。
- 上一篇:一种无跳模连续单频光纤激光器
- 下一篇:一种单模全光纤主振荡器