[发明专利]基于加速度计的虚拟电子呼啦圈的实现方法有效
申请号: | 201610326360.X | 申请日: | 2016-05-16 |
公开(公告)号: | CN105999611B | 公开(公告)日: | 2018-01-12 |
发明(设计)人: | 毛科技;方凯;方飞 | 申请(专利权)人: | 浙江工业大学 |
主分类号: | A63B19/02 | 分类号: | A63B19/02;A63B24/00 |
代理公司: | 杭州天正专利事务所有限公司33201 | 代理人: | 王兵,黄美娟 |
地址: | 310014 浙江省*** | 国省代码: | 浙江;33 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 基于 加速度计 虚拟 电子 呼啦圈 实现 方法 | ||
技术领域
本发明主要涉及一种电子运动器材的软硬件实现方法,属于电子运动器材领域。
背景技术
目前呼啦圈运动非常流行,它对身体健康非常有益,但是传统的呼啦圈非常笨重且不方便携,在狭小的空间内不能进行运动。很多人每天都需要进行这项运动,但是呼啦圈的局限性使得他们不能每天都进行。同时传统呼啦圈的笨重也会对运动者的腰部造成一定程度的损伤。
针对上述问题,我们利用嵌入式技术设计了一种基于加速度计的虚拟电子呼啦圈,该电子设备的电路板尺寸非常小,方便携带,将其佩戴在腰间或置于上衣口袋即可进行呼啦圈运动。如果运动者的扭腰力度达到转传统呼啦圈的水平,该电子设备会自动计数一圈,否则不计数,并且运动者能通过电子设备的蓝牙模块与手机相连接查看运动结果。此项发明替代了传统的呼啦圈,使得这项运动能随时随进行,因此非常有意义。
发明内容
本发明要解决现有呼啦圈不方便使用的问题,提供一种基于加速度计的虚拟电子呼啦圈实现方法,该方法通过分析加速度计在呼啦圈运动中的波形特征判断是否完成一次呼啦圈运动,从而彻底解决了传统呼啦圈的不方便使用的问题。
本发明主要由硬件和软件两部分组成,硬件主要负责数据采集、数据处理和通讯,软件主要负责对数据的分析与判断。
1.硬件方案
本发明的硬件部分主要由16位超低功耗微控制器MSP430、adxl345加速度计、HC-05蓝牙设备和电池四部分组成。低功耗的adxl345加速度计可以对高达±16g的加速度进行高分辨率测量。MSP430单片机通过spi总线驱动加速度计,采集加速度计X、Y、Z轴的数据,采集频率为100Hz。MSP430单片机通过串口驱动蓝牙设备与用户的手机进行连接,并将结果发送到手机端方便用户查看。本发明采用800mA的锂电池供电。由于硬件功耗低,因此设备能运行较长时间。硬件大小为30mm*40mm*15mm,体积小非常方便用户携带。
2.软件方案
本发明设计了一套算法能准确判断出加速度产生的数据是否完成了一次呼啦圈运动。算法主要由卡尔曼滤波器和朴素贝叶斯分类器组成。卡尔曼滤波器对加速度计产生的数据进行滤波,去掉一些异常数据。呼啦圈运动训练样本的X、Y、Z轴波形呈周期性变化,在数据采集频率为100Hz的条件下,一个周期由m个点组成。通过分离出每个周期,然后提取每个周期的波形特征(均值、方差、有效值、峰值因子、三轴的相关性),最后利用提取的样本特征训练朴素贝叶斯分类器,训练结束后该分类器就能对实时加速度计数据集进行判断是否完成一次完整的呼啦圈运动。
在虚拟电子呼啦圈运行的时候加速度计会产生大量的数据,该数据是一串时间相关的数据,如何高效的处理这些数据,产生有效的实时数据集非常关键,本发明采用滑动窗口的方法解决这个问题。一个完整的呼啦圈运动加速度计的每个轴会产生m个数据,我们就设置滑动窗口的大小为m,然后将滑动窗口中这3*m个数据分别提取上述的波形特征送入朴素贝叶斯分类器中判断滑动窗口内的数据是否能构成一次完整的呼啦圈运动,如果能则计一圈,否则滑动窗口向后滑动m/4个数据。该方法使得算法能实时判断正在进行的运动是否完成一次呼啦圈运动。
基于加速度计的虚拟电子呼啦圈的实现方法,包括如下步骤:
步骤1:训练样本的特征提取;
11.首先招募10名志愿者做传统的转呼啦圈运动,将硬件佩戴在志愿者的腰部,每名志愿者转500圈,收集运动过程中的加速度数据作为训练样本,加速度计读取数据的频率为100Hz;
12.然后利用卡尔曼滤波器滤除训练样本中一些异常数据,通过滤波得到了可用的训练集。训练集中的数据分为3类,分别是加速度计X、Y、Z轴的数据。每个轴的数据在时间上是连续的,以时间为横坐标,数值为纵坐标是一串连续的周期性不规则波形。通过分析可知每个波代表转一次呼啦圈。接着对连续波形进行分割,求出每位志愿者转一次呼啦圈需要的加速度数据个数,并求取平均值m作为后续滑动窗口大小。最后求出每个波形的特征,包括均值、方差、有效值、峰值因子、三轴的相关性,这些波形特征呈现一定分布,以这些波形特征值作为输入训练步骤2中朴素贝叶斯分类算法。
121.处理加速度计X轴数据;
假设X轴产生一个波形的数据为x1、x2、x3……xn,各个特征值计算方法如下:
101.均值:
102.方差
103.有效值
104.峰值因子
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于浙江工业大学,未经浙江工业大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201610326360.X/2.html,转载请声明来源钻瓜专利网。