[发明专利]一种基于变分模式分解滤波的包络分析方法有效
申请号: | 201610492073.6 | 申请日: | 2016-06-29 |
公开(公告)号: | CN106153339B | 公开(公告)日: | 2018-05-01 |
发明(设计)人: | 林近山;窦春红 | 申请(专利权)人: | 潍坊学院 |
主分类号: | G01M13/04 | 分类号: | G01M13/04;G01M13/02 |
代理公司: | 暂无信息 | 代理人: | 暂无信息 |
地址: | 261061 山*** | 国省代码: | 山东;37 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 一种 基于 模式 分解 滤波 包络 分析 方法 | ||
技术领域
本发明涉及旋转机械状态监测与故障诊断领域,具体涉及一种基于变分模式分解滤波的包络分析方法。
背景技术
包络分析技术广泛应用于齿轮和滚动轴承的故障诊断中。现有的包络分析技术有下面三个缺陷:①现有的包络分析技术或者是直接对原始信号进行分析,或者是仅对原始信号进行简单的滤波后再进行分析,因此现有的方法容易受到噪声、趋势及其它成分的干扰,从而导致现有技术的分析精度较低;②现有的包络分析技术是以Hilbert变换为基础,而Hilbert变换要求被分析的信号必须是单分量的窄带信号,否则信号的频率调制部分将要污染信号的幅值包络分析结果,但是目前待分析的信号都不严格满足单分量且窄带的条件,这样就会导致现有技术因精度不高而容易出现误判问题;③ 由传统方法得到的包络谱存在着端点效应。
发明内容
本发明要解决的问题是针对以上不足,提出一种基于变分模式分解滤波的包络分析方法,采用本发明的包络分析方法后,具有分析结果准确度和精确度高,并能准确地检测出旋转机械故障类型的优点。
为解决以上技术问题,本发明采取的技术方案如下:一种基于变分模式分解滤波的包络分析方法,其特征在于,包括以下步骤:
步骤1:利用加速度传感器以采样频率fs测取旋转机械的振动信号x(k), (k=1, 2, …,N),N为采样信号的长度;
步骤2:采用变分模式分解(Variational Mode Decomposition)算法将信号x(k)分解成n个分量之和,即,其中,ci(k)代表由变分模式分解算法得到的第i个分量;
步骤3:对ci(k)执行重排操作和替代操作,经重排操作得到的数据用cishuffle(k)表示,替代操作后得到数据用ciFTran(k)表示;
步骤4:对ci(k)、cishuffle(k)和ciFTran(k)分别执行多重分形去趋势波动分析(Multifractal Detrended Fluctuation Analysis, MFDFA),得到广义Hurst指数曲线,ci(k)的广义Hurst指数曲线用Hi(q)表示;cishuffle(k)的广义Hurst指数曲线用Hishuffle(q)表示;ciFTran(k)的广义Hurst指数曲线用HiFTran(q)表示;
步骤5:如果Hi(q) 与Hishuffle(q)或Hi(q) 与HiFTran(q)之间的相对误差小于5%,或者Hi(q) 、Hishuffle(q) 和HiFTran(q)三者都不随q而变化,则抛弃对应的ci(k)分量;
步骤6:对剩余的ci(k)分量求和,将该和记为信号经重排和替代滤波后的结果xf1(k);
步骤7:对xf1(k)执行谱峭度分析,求出信号峭度最大处所对应的中心频率f0和带宽B;
步骤8: 根据中心频率f0和带宽B对xf1(k)进行带通滤波,得到xf2(k);
步骤9:对信号xf2(k)执行有理样条迭代平滑包络分析,得到信号包络eov(k);
步骤10:对得到的信号包络eov(k)执行离散傅里叶变换得到包络谱,根据包络谱特征频率判断机器的故障类型。
一种优化方案,所述步骤3中数据重排操作包括以下步骤:
随机打乱分量ci(k)的排列顺序。
进一步地,所述步骤3中数据替代操作包括以下步骤:
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于潍坊学院,未经潍坊学院许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201610492073.6/2.html,转载请声明来源钻瓜专利网。
- 上一篇:一种衣物防霉剂
- 下一篇:一种疏水性柔软薄页纸