[发明专利]一种基于随机分块模型的脑结构网络连接优化方法有效
申请号: | 201610592788.9 | 申请日: | 2016-07-25 |
公开(公告)号: | CN106251379B | 公开(公告)日: | 2017-11-07 |
发明(设计)人: | 郭浩;曹锐;陈永乐;相洁;李海芳;陈俊杰 | 申请(专利权)人: | 太原理工大学 |
主分类号: | G06T11/00 | 分类号: | G06T11/00 |
代理公司: | 北京科亿知识产权代理事务所(普通合伙)11350 | 代理人: | 汤东凤 |
地址: | 030024 *** | 国省代码: | 山西;14 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 一种 基于 随机 分块 模型 结构 网络 连接 优化 方法 | ||
1.一种基于随机分块模型的脑结构网络连接优化方法,其特征在于:该方法是采用如下步骤实现的:
步骤S1:对磁共振扩散加权影像进行预处理,然后根据选定的标准化脑图谱,对预处理后的磁共振扩散加权影像进行区域分割;
步骤S2:采用纤维束追踪算法,将预处理后的磁共振扩散加权影像映射到选定的标准化脑图谱中,然后根据纤维束追踪的结束条件,计算两两脑区间的纤维束数量,由此得到脑区间的纤维束数量矩阵;
步骤S3:设定阈值,然后根据阈值对脑区间的纤维束数量矩阵进行二值化处理,由此得到脑结构网络模型;
步骤S4:采用符号检验方法,构建基于多个脑结构网络模型样本的脑结构中枢网络模型;
步骤S5:采用随机分块模型算法,对脑结构中枢网络模型中的连接进行可信度计算;
步骤S6:根据可信度计算结果,对脑结构中枢网络模型进行重构优化;
所述步骤S5中,可信度计算的步骤具体如下:
步骤S51:遍历脑结构中枢网络模型中的所有节点,并对所有节点进行随机分组,然后计算所有组的组内现有连接数、组内最大连接数、组间现有连接数、组间最大连接数;
步骤S52:根据随机分组结果,计算两两节点间的连接可信度值;计算的公式具体表示如下:
公式(1)中:表示节点i与节点j存在连接的可信度值;表示节点i所在的组σi与节点j所在的组σj之间的现有连接数;表示节点i所在的组σi与节点j所在的组σj之间的最大连接数;
步骤S53:根据随机分组结果,对所有节点进行重新分组,然后重新计算所有组的组内现有连接数、组内最大连接数、组间现有连接数、组间最大连接数;重新分组的步骤具体如下:随机选择一个节点i,并假设节点i属于组α中,然后根据添加规则将节点i添加到随机选择的一个组β中;添加规则具体表示如下:
公式(2)中:DH表示在某种特定的分组下,组α与组β之间连接数的关系;lαβ表示组α与组β中存在连接的连接数;rαβ表示组α与组β中可以存在的最大的连接数;若在两种不同的分组情况下,对所有组两两之间的DH求和,记为∑DH,若两种分组情况下的差值Δ(∑DH)≤0.0,则将节点i从组α添加到组β中;
步骤S54:计算所有可能的分组后两两节点间的连接可信度值;计算公式具体表示如下:
公式(3)-(5)中:表示重新分组后节点i与节点j之间的连接可信度值;Z表示在每种分组情况下求得的划分函数的总和;p表示某一特定分组;P表示分组空间;表示重新分组后节点i所在的组σi与节点j所在的组σj之间的现有连接数;表示重新分组后节点i所在的组σi与节点j所在的组σj之间的最大连接数;H(p)表示进行分组的函数;lαβ表示组α与组β中存在连接的连接数;rαβ表示组α与组β中可以存在的最大的连接数。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于太原理工大学,未经太原理工大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201610592788.9/1.html,转载请声明来源钻瓜专利网。
- 上一篇:医学图像中边缘伪影的去除方法及装置
- 下一篇:图像重建方法