[发明专利]一种基于荧光光谱的稻种发芽率无损检测方法在审
申请号: | 201610907616.6 | 申请日: | 2016-10-17 |
公开(公告)号: | CN107957410A | 公开(公告)日: | 2018-04-24 |
发明(设计)人: | 卢伟;杨洋;王家鹏;王新宇 | 申请(专利权)人: | 南京农业大学 |
主分类号: | G01N21/64 | 分类号: | G01N21/64;G01N1/28 |
代理公司: | 暂无信息 | 代理人: | 暂无信息 |
地址: | 21009*** | 国省代码: | 江苏;32 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 一种 基于 荧光 光谱 稻种 发芽率 无损 检测 方法 | ||
1.一种基于荧光光谱的稻种发芽率无损检测方法,其特征为:
步骤1:将建模所需的不同发芽率稻种样品置入装有蒸馏水的试管中浸泡;
步骤2:取出试管中的浸泡液置于荧光分光光度计的样品池中,扫描浸泡液得到波长范围为360~650nm的荧光光谱;
步骤3:利用小波去噪对步骤2中得到的荧光光谱进行平滑处理;
步骤4:利用主成分分析(PCA)提取步骤3平滑处理后的荧光光谱中的特征波段;
步骤5:对建模所需的不同发芽率的稻种样品按照步骤1至步骤4进行操作,得到特征波段荧光光强Pi(为第i个样品的特征波段荧光光强,i=1,2…n,n为建模样本数量);对建模用的不同发芽率的稻种样品按照GB/T 3543.4表1规定的条件(20℃)和时间(5d)进行发芽试验,得到不同稻种样品的发芽率Gi(为第i个样品的发芽率,i=1,2…n,n为建模样本数量);
步骤6:基于深度神经网络(DNN)建立以步骤5中建模所需的不同发芽率的稻种样品特征波段荧光强度Pi为输入、稻种发芽率Gi为输出的稻种发芽率预测模型;
步骤7:对待测稻种按照步骤1至步骤4进行处理,将步骤4中提取的待测稻种特征波段荧光光谱输入到步骤6中建立的稻种发芽率预测模型,得到发芽率。
2.根据权利要求书1所述的基于荧光光谱的稻种发芽率无损检测方法,其中的小波去噪按照以下步骤计算:
步骤①:先对含噪光谱f(k)进行小波分解,采用‘sym8’小波基构造小波,分解层数为9,实现该步骤的Matlab代码为:
xd=wden(x,′sqtwolog′,′s′,′sln′,9,′sym8′)
其中x为原始信号,sqtwolog为阈值信号处理,s为软阈值,sln为根据第一层小波分解的噪声水平估计进行调整的参数,“9”代表分解为9层,sym8代表采用‘sym8’小波基构造小波;
步骤②:对小波分解得到的噪声部分进行sqtwolog阈值处理。获取域值的Matlab代码如下:
[thr,sorh,keepapp]=ddencmp(′den′,′wv′,nx)
其中x为信号向量,wv表示使用小波分解,den表示去噪声;返回参数thr为阈值,sorh决定硬阈值或软阈值,keepapp为判断是否对近似分量进行阈值处理的参数。
步骤③:根据小波分解的第9层低频系数和各层高频系数对步骤①用于分解含噪光谱的小波进行重构,利用重构得到的小波对f(k)进行去噪处理;
根据权利要求1所述的基于荧光光谱的稻种发芽率无损检测方法中的PCA提取特征波段,按照以下步骤计算:
步骤(1):将步骤3得到的荧光光谱设为数据矩阵A,计算矩阵A的协方差矩阵B,B=(Aij)p×p,其中,
步骤(2):求出B的特征值λi及相应的正交变化单位特征向量ai,B的前m个较大的特征值λ1≥λ2≥…λm>0,为前m个主成分的方差,λi对应的单位特征向量ai就是主成分Fi的关于数据矩阵B的系数,则数据矩阵B的第i个主成分Fi为
Fi=ai·B
步骤(3):通过方差(信息)累计贡献率G(m)进行主成分提取,G(m)的计算公式为:
当累计贡献率达到95%时,则提取对应的前m个主成分,否则继续执行步骤(3)。
3.根据权利要求1所述的稻种发芽率预测模型,其特征为,基于深度神经网络(DNN)的单输入单输出的稻种发芽率预测模型,DNN建模按照以下步骤进行:
步骤a:将权利要求1中步骤4所得特征波段的荧光光谱作为样本数据C,对所述的样本数据C进行归一化,使样本数据范围在[0,1]之间,具体代码如下:
for i=1:m
C(i,:)=C(i,:)/norm(C(i,:));
步骤b:定义深度神经网络为三层结构,其中第一层和第三层均是由一个输入单元、一个隐含单元及一个输出单元组成的径向基函数RBF神经网络,第二层是由一个隐含单元和一个可视单元组成的受限玻尔兹曼机RBM神经网络;
步骤c:通过学习样本数据C的特征,训练基于深度神经网络的单输入单输出的稻种发芽率预测模型:
i.随机选取包含稻种老化时间,稻种浸泡时间两个特征的样本数据C的2/3数据作为第一个实验对象,选取样本数据C其余1/3数据作为第二个实验对象,根据权利要求1中步骤4提取两个实验对象训练样本的老化时间和浸泡时间对发芽率贡献的特征,即实验对象训练样本的低级特征;
ii.将实验对象训练样本的低级特征作为深度神经网络中第一层输入单元的输入特征,通过径向基函数RBF神经网络对低级特征进行训练,得到第一个RBF神经网络中隐含单元的输出,作为深度神经网络的第一层输出,即实验对象的高级特征,完成深度神经网络的第一层训练;
iii.通过受限玻尔兹曼机RBM神经网络对实验对象的高级特征进行训练,得到第二个RBM神经网络中隐含单元的输出,作为深度神经网络的第二层输出,即实验对象的更高级特征,完成深度神经网络的第二层训练;
iv.通过径向基函数RBF神经网络对实验对象的更高级特征进行训练,得到第三个RBF神经网络输出单元的输出,作为深度神经网络的第三层输出,即实验对象训练样本的纹理分类特征,完成深度神经网络第三层的训练;
v.若Rc≤0.9,返回步骤i;否则结束DNN模型训练,得到训练好的基于荧光光谱的稻种发芽率预测模型。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于南京农业大学,未经南京农业大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201610907616.6/1.html,转载请声明来源钻瓜专利网。