[发明专利]一种增量式的梯度提升决策树更新方法有效

专利信息
申请号: 201610919285.8 申请日: 2016-10-21
公开(公告)号: CN106446964B 公开(公告)日: 2018-04-03
发明(设计)人: 张重生;凡高娟;张愿 申请(专利权)人: 河南大学
主分类号: G06K9/62 分类号: G06K9/62
代理公司: 郑州万创知识产权代理有限公司41135 代理人: 李伊宁
地址: 475001 河*** 国省代码: 河南;41
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 一种 增量 梯度 提升 决策树 更新 方法
【说明书】:

技术领域

发明涉及一种数据分类模型的更新方法,尤其涉及一种增量式的梯度提升决策树更新方法。

背景技术

近年来,人们逐渐意识到数据分析的重要性,开始着手对数据进行分析和挖掘,发现数据潜在的价值。越来越多的领域如金融、电商、医疗和教育等已经开始使用数据挖掘技术来获得数据的潜在价值。

在这些应用和服务中,较为常见的需求是数据分类。在数据分类问题中,如何快速更新已有的数据分类模型,是一项重要的研究课题,也是当前很多需要实时处理数据的应用所面临的重要挑战。因为,新数据到来后,如果重新建立一个新的数据分类模型,将耗费大量的时间。

梯度提升决策树,即Gradient Boosting Decision Tree,是具有较高准确率的数据分类算法。梯度提升决策树的思想使其具有天然优势可以发现多种有区分性的模型以及模型组合。业界中,Facebook使用其来自动发现有效的模型、特征模型,来作为逻辑回归模型中的模型,以提高点击率预估的准确性。但是当新数据到来后,现有的梯度提升决策树需要在所有的数据集上重新训练一个数据分类模型,并没有充分利用在原始数据集上已建立的数据分类模型,对此,我们设计了一个增量式的梯度提升决策树方法,在新数据集到来时,快速更新在原始数据集上已建立的数据分类模型。

发明内容

本发明的目的是提供一种增量式的梯度提升决策树更新方法,能够在一个或多个新的数据块实时到达后,直接在已有的基于梯度提升决策树算法的数据分类模型上进行快速更新,极大地减少了建立数据分类模型的时间,提高了更新效率。

本发明采用下述技术方案:

一种增量式的梯度提升决策树更新方法,依次包括以下步骤:

A:对增量数据集与原始数据集进行排序归并,形成合并了新的数据块后的当前最新有序数据集;

B:分别计算每个结点在当前最新有序数据集上的最新最佳分裂属性和分裂值;

C:对决策树中的每个结点,基于合并了新的数据块后的当前最新有序数据集,首先利用步骤B计算得到的最新最佳分裂属性,与新的数据块到来前该结点上最佳分裂属性进行对比;当最新最佳分裂属性和新的数据块到来前该结点上的最佳分裂属性相同时,仅更新该结点上该属性的分裂值,否则进一步判断该结点是决策树的中间结点还是根结点;如果该结点是决策树的中间结点,则基于CART决策树算法中构建二叉决策树的方法,使用前一棵决策树对应的最新残差,从该中间结点起重新训练一棵新的子树,替代原有的以该中间结点作为根结点的子树,若该结点所在决策树为第一棵决策树,则使用当前最新有序数据集中每一个实例目标列的值减去所有实例目标列的平均值作为最新残差;如果该结点是根结点,则基于CART决策树算法中构建二叉决策树的方法,使用前一棵决策树对应的最新残差,重新训练一个新的决策树,替代原有的当前根结点所在的整棵决策树,若该结点所在决策树为第一棵决策树,则使用当前最新有序数据集中每一个实例目标列的值减去所有实例目标列的平均值作为最新残差;然后,对于剩余的每棵决策树,结合前一棵决策树对应的最新残差,重新训练一棵新的决策树,替代当前的整棵决策树;每当更新完一个决策树,使用已更新完的决策树对新数据集的目标列进行残差更新,迭代地更新每一棵决策树及新数据集目标列的残差值,直到数据分类模型更新完毕。

所述的步骤A包括以下步骤:

A1:在一个或多个新的数据块实时到达后,首先对新的数据块上的各个属性进行单独排序,然后为每个属性独立生成一个排序后的数据集;

A2:使用排序归并策略,依次将新的数据块上为每个属性独立生成的排序后的数据集和该属性原有的基于原始数据集排序的数据集进行合并。

所述的步骤A2中合并方法如下:

步骤1:为每个属性原有的基于原始数据集排序的数据集OriDatai设置指针P1,为新的数据块上对该属性独立生成的排序后的数据集NewDatai设置指针P2;首先使用指针P2获得数据集NewDatai中的第一个值V2,并与指针P1所指向的数据集OriDatai中的第一个值V1进行比较:

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于河南大学,未经河南大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/201610919285.8/2.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top