[发明专利]高含硫天然气脱硫工艺强跟踪演化建模方法在审
申请号: | 201611003680.8 | 申请日: | 2016-11-14 |
公开(公告)号: | CN106777468A | 公开(公告)日: | 2017-05-31 |
发明(设计)人: | 辜小花;杨利平;李太福;唐海红;张利亚;张堃;邱奎 | 申请(专利权)人: | 重庆科技学院 |
主分类号: | G06F17/50 | 分类号: | G06F17/50;G06N3/02 |
代理公司: | 重庆蕴博君晟知识产权代理事务所(普通合伙)50223 | 代理人: | 王玉芝,杨明 |
地址: | 401331 重*** | 国省代码: | 重庆;85 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 高含硫 天然气 脱硫 工艺 跟踪 演化 建模 方法 | ||
技术领域
本发明涉及高含硫天然气净化技术领域,更为具体地,涉及一种高含硫天然气脱硫工艺强跟踪演化建模方法。
背景技术
高含硫天然气酸性组分含量比常规天然气高出数倍,其脱硫过程胺液循环量大、工艺流程复杂、能耗高。统计表明,脱硫单元能耗占高含硫天然气净化厂总能耗50%以上,其单位综合能耗高达1729.3MJ·t-1,属于高耗能单元。对大型净化厂而言,通过脱硫单元优化可降低能耗5%~10%。此外,高含硫天然气酸性组分浓度高,经过净化后的产品气量相对原料气流量有显著下降。为此,对高含硫天然气脱硫过程进行工艺优化,实现节能降耗,提高产率和气体加工经济效益是十分必要的。
发明内容
鉴于上述问题,本发明的目的是提供一种高含硫天然气脱硫工艺强跟踪演化建模方法,以解决上述背景技术所提出的问题。
本发明提供的高含硫天然气脱硫工艺强跟踪演化建模方法,包括:
步骤S1:选择影响脱硫效率的工艺参数和脱硫单元的性能指标;其中,工艺参数包括进入尾气吸收塔贫的胺液流量、进入二级吸收塔的贫胺液流量、原料气处理量、尾气单元返回脱硫单元的半富胺液流量、一级吸收塔胺液入塔温度、二级吸收塔胺液入塔温度、闪蒸罐压力、一个重沸器的蒸汽消耗量、另一个重沸器的蒸汽消耗量和蒸汽预热器的蒸汽消耗量;脱硫单元的性能指标包括净化气中H2S和CO2的浓度以及净化气的产量;
步骤S2:采集预设时间的工艺参数和性能指标的数据,剔除误差样本后形成样本集[X,Y];
步骤S3:对样本集[X,Y]进行归一化,形成归一化样本集取归一化样本集中前80%的样本作为训练样本,而剩余的20%样本作为测试样本;
步骤S4:基于训练样本构建神经网络模型和神经网络模型的初始状态变量X,以及,将训练样本中的作为神经网络模型的输入,将训练样本中的作为神经网络模型的输出;
其中,构建的神经网络模型为:
其中,Ik为训练样本的矢量样本值,并作为神经网络模型的输入,为网络输入层到隐含层的神经元的连接权值,为网络输入层到隐含层的神经元的阈值,为隐含层到网络输出层的神经元的连接权值,为隐含层到网络输出层的神经元的阈值,其中,i=1,2…S0;j=1,2…S1;k=1,2…S2;S0为网络输入层的神经元的数量,S1为网络隐含层的神经元的数量,S2为网络输出层的神经元的数量;
构建的初始状态变量为:
步骤S5:利用ST-UKFNN算法估计神经网络模型的最优状态变量;
步骤S6:将最优状态变量作为所述神经网络模型的和对式(1)进行更新,获得训练样本更新后的神经网络模型;
步骤S7:将测试样本中的输入到更新后的神经网络模型,得到预测结果,将预测结果与测试样本中的实际输出进行比较,如果比较结果小于预设误差值,所构建的神经网络模型有效;否则重复上述步骤S1-S7,直至比较结果小于预设误差值为止。
本发明提供的高含硫天然气脱硫工艺强跟踪演化建模方法,能够节能降耗,提高产率和气体加工经济效益。
附图说明
通过参考以下结合附图的说明及权利要求书的内容,并且随着对本发明的更全面理解,本发明的其它目的及结果将更加明白及易于理解。在附图中:
图1a-图1c为训练样本的拟合精度图;
图2a-图2c为测试样本的测试精度图;
图3为测试样本与训练样本的精度误差图。
具体实施方式
名词解释
ST-UKFNN:Strong track Unscented Kalman Fliter Neural Network,强追踪无迹卡尔曼滤波神经网络。
本发明提供的高含硫天然气脱硫工艺强跟踪演化建模方法,包括:
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于重庆科技学院,未经重庆科技学院许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201611003680.8/2.html,转载请声明来源钻瓜专利网。