[发明专利]人脸图像生成方法、装置及设备有效

专利信息
申请号: 201611008893.X 申请日: 2016-11-16
公开(公告)号: CN106780662B 公开(公告)日: 2020-09-18
发明(设计)人: 刘宇;周而进 申请(专利权)人: 北京旷视科技有限公司;北京迈格威科技有限公司
主分类号: G06T11/60 分类号: G06T11/60;G06N3/08
代理公司: 北京市柳沈律师事务所 11105 代理人: 于小宁;王娟
地址: 100190 北京市*** 国省代码: 北京;11
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 图像 生成 方法 装置 设备
【说明书】:

提供了一种人脸图像生成方法、装置及设备,所述人脸图像生成方法还包括:基于所述合成人脸图像与所述需求特征向量,利用需求判定深度卷积网络生成需求满足度评分;以及基于所述需求满足度评分,更新所述人脸生成深度卷积网络以及所述需求判定深度卷积网络的参数。通过利用人脸生成深度卷积网络基于人脸特征向量和需求特征向量生成人脸,可以无需利用三维模型生成具有特定特征的人脸图像。

技术领域

发明涉及人脸图像生成技术领域,更具体地涉及一种人脸图像生成方法、装置及设备。

背景技术

目前的人脸图像生成与人脸重建都是通过多张不同角度二维照片生成三维模型,然后渲染得到新的二维图像。

然而,这种基于三维模型得到新的二维照片的方法,超时较大,效率较低,而且需要利用同一个体的诸多不同角度照片来进行三维建模,这在实际应用中往往不能得到满足。而且,这种方法只适用于生成已有个体的不同角度与光照的图像,并不能生成新的人脸图像。

因此,需要一种不仅能够基于需求特征从现有人脸图像重建带有所述需求特征的人脸图像,而且能够不基于现有人脸图像而仅基于需求特征生成新的人脸图像的方法和装置。

发明内容

考虑到上述问题而提出了本发明。本发明提供了一种人脸图像生成方法及装置,通过利用人脸生成深度卷积网络基于人脸特征向量和需求特征向量生成人脸,可以无需利用三维模型生成具有特定特征的人脸图像。

根据本发明一方面,提供了一种人脸图像生成方法,包括:生成M维人脸特征向量,其中M为大于1的整数;将所述M维人脸特征向量与N维需求特征向量连接以生成合成特征向量,其中N为大于等于1的整数;利用人脸生成深度卷积网络,基于所述合成特征向量生成合成人脸图像。

此外,根据本发明实施例,所述人脸图像生成方法还包括:基于所述合成人脸图像与所述需求特征向量,利用需求判定深度卷积网络生成需求满足度评分;以及基于所述需求满足度评分,更新所述人脸生成深度卷积网络以及所述需求判定深度卷积网络的参数。

此外,根据本发明实施例,在从给定人脸图像中提取所述人脸特征向量的情况下,所述人脸图像生成方法还包括:基于所述合成人脸图像与所述给定人脸图像,利用第一人脸判定深度卷积网络生成人脸匹配度评分;以及基于所述人脸匹配度评分,更新所述人脸特征提取深度卷积网络、所述人脸生成深度卷积网络以及所述人脸判定深度卷积网络的参数。

此外,根据本发明实施例,在随机生成所述人脸特征向量的情况下,所述人脸图像生成方法还包括:基于所述合成人脸图像,利用第二人脸判定深度卷积网络生成人脸满足度评分;以及基于所述人脸满足度评分,更新所述人脸生成深度卷积网络以及所述人脸判定深度卷积网络的参数。

根据本发明另一方面,提供了一种人脸图像生成装置,包括:人脸特征生成模块,被配置为生成M维人脸特征向量,其中M为大于1的整数;向量合成模块,被配置为将所述M维人脸特征向量与N维需求特征向量连接以生成合成特征向量,其中N为大于等于1的整数;合成人脸生成模块,被配置为利用人脸生成深度卷积网络,基于所述合成特征向量生成合成人脸图像。

此外,根据本发明实施例,所述人脸图像生成装置还包括:需求判定模块,被配置为基于所述合成人脸图像与所述需求特征向量,利用需求判定深度卷积网络生成需求满足度评分;以及第一参数调整模块,被配置为基于所述需求满足度评分,更新所述人脸生成深度卷积网络以及所述需求判定深度卷积网络的参数。

此外,根据本发明实施例,在从给定人脸图像中提取所述人脸特征向量的情况下,所述人脸图像生成装置还包括:第一人脸判定模块,被配置为基于所述合成人脸图像与所述给定人脸图像,利用第一人脸判定深度卷积网络生成人脸匹配度评分;以及第二参数调整模块,被配置为基于所述人脸匹配度评分,更新所述人脸特征提取深度卷积网络、所述人脸生成深度卷积网络以及所述第一人脸判定深度卷积网络的参数。。

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于北京旷视科技有限公司;北京迈格威科技有限公司,未经北京旷视科技有限公司;北京迈格威科技有限公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/201611008893.X/2.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top