[发明专利]企业非标准格式文档的信息提取方法在审

专利信息
申请号: 201611033784.3 申请日: 2016-11-23
公开(公告)号: CN106776538A 公开(公告)日: 2017-05-31
发明(设计)人: 付婷;蔡宇翔;蔡力军;苏运东;肖琦敏;王雪晶;陈锐;张垚;刘心 申请(专利权)人: 国网福建省电力有限公司;国家电网公司;国网福建省电力有限公司信息通信分公司
主分类号: G06F17/27 分类号: G06F17/27;G06F17/30
代理公司: 福州元创专利商标代理有限公司35100 代理人: 蔡学俊,丘鸿超
地址: 350003 福*** 国省代码: 福建;35
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 企业 非标准 格式 文档 信息 提取 方法
【权利要求书】:

1.一种企业非标准格式文档的信息提取方法,其特征在于:包括如下步骤,

S1、输入原始文档;

S2、待提取信息所在的段落检测及提取,负责从原始文档全文中,识别并提取出待提取信息所在的章节段落,从而使得每个待提取信息都对应到原始文档的一个片段,形成短文本;

S3、面向短文本,采用多策略的信息提取框架,即能够针对不同的信息模式,支持采用不同的策略提取不同类型的信息。

2.根据权利要求1所述的企业非标准格式文档的信息提取方法,其特征在于:所述原始文档为包括公文、招标书、营销文档的企业文档。

3.根据权利要求1所述的企业非标准格式文档的信息提取方法,其特征在于:所述步骤S2的具体实现如下,

S21、基于规则的标题抽取:

通过word的宏语言,一次性将原始文档按章节及其章节名称抽取出,形成不同的文档片段;而后,利用正则表达式,将符合模式的标题取出;

S22、将标题提取的内容作为标注语料;

S23、文档特征化:

将文档通过分词技术,进行初步的特征化,形成特征向量全集,而后进行特征优化;所述特征优化具体为:

从特征向量全集中产生一个特征子集;而后采用评价函数对该特征子集进行评价,并将评价的结果与停止准则的条件进行比较,满足则该过程完成,不满足则需要继续迭代;其中评价函数的公式如下,

其中,m表示的是类的数量,表示其中的某一个类,t表示的是一个词语,表示这个文本属于类的概率,表示词语t在文本中出现的概率,表示当一个文本中包含词语t时,这个文本属于类概率,表示当一个文本中不包含词语t时,这个文本属于类的概率;

S24、训练分类模型:

将步骤S22的标注语料,通过步骤S23的特征化以后,利用SVM分类算法,构建一个用于二分类的模型,利用该模型对原始文档的章节进行预测;

S25、模型部署运行:

对输入文档进行上述S21-S23处理后,利用步骤S24生成的模型,即可对输入文档的章节继续异常,从而识别出待提取信息所在章节,使得输入文档由长文档变为短文本。

4.根据权利要求1所述的企业非标准格式文档的信息提取方法,其特征在于:所述步骤S3的具体实现如下,

(1)对于格式固定严谨,有确定规则的信息,优先采用确定性较高的规则方法进行关键信息提取;

(2)对于符合三大类、七小类的命名实体信息,采用准确的命名识别提取技术进行提取。

5.根据权利要求4所述的企业非标准格式文档的信息提取方法,其特征在于:所述步骤S3的中还包括对于除(1)、(2)两类外的自由文本信息,该类自由文本信息采用人工提取。

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于国网福建省电力有限公司;国家电网公司;国网福建省电力有限公司信息通信分公司,未经国网福建省电力有限公司;国家电网公司;国网福建省电力有限公司信息通信分公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/201611033784.3/1.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top