[发明专利]基于Malek模型的系统故障诊断方法在审
申请号: | 201611037746.5 | 申请日: | 2016-11-23 |
公开(公告)号: | CN106776088A | 公开(公告)日: | 2017-05-31 |
发明(设计)人: | 刘翠;归伟夏 | 申请(专利权)人: | 广西大学 |
主分类号: | G06F11/07 | 分类号: | G06F11/07 |
代理公司: | 广西南宁公平知识产权代理有限公司45104 | 代理人: | 覃现凯 |
地址: | 530004 广西壮族*** | 国省代码: | 广西;45 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 基于 malek 模型 系统 故障诊断 方法 | ||
技术领域
本发明涉及智能故障诊断算法,特别是提供了一种基于Malek模型的系统故障诊断方法。
背景技术
大数据时代的到来,让多机系统承载了大量的数据、信息、算法等,但是,涵盖大量PC机的多机系统一旦出现故障,如何能准确、快速地找出故障结点是当前面临的重大问题。系统级故障诊断的思路是借助结点自身的通信能力建立合适的诊断模型,并结合有效的诊断算法来找出故障集合。目前已有六种诊断模型,它们分别是PMC、BGM、Chwa&Hakimi、Malek、MM以及MM*模型。按照结点间基于测试或比较分为两大类:测试模型和比较模型。测试模型的原理是让结点之间相互测试,根据被测试结点反馈的信息和测试结点的预期是否相同来判断结点状态。而比较模型中,让相邻结点完成相同的测试任务,通过比较它们的结果来判断结点的状态。
Malek诊断模型,即基于比较的非对称模型,其基本思想是:首先让两台处理机执行同一项任务,然后对所得结果进行比较。若结果相同,则两台处理机都认为对方是无故障机;否则(即结果不同),这两台处理机都认为对方是故障机。用这种方法测试得到的一批测试报告,决定了一个n阶对称矩阵S=(sij)n×n,sij∈{±1,0},反之该矩阵也决定了这组测试报告。
遗传算法(GeneticAlgorithm,GA)是模仿自然界生物进化机制发展起来的随机全局搜索和优化方法,其本质是一种高效、并行、全局搜索的方法,它能在搜索过程中自动获取并积累有关搜索空间的知识,自适应地控制搜索过程以求得最优解。遗传算法的操作对象是一群二进制串(个体),即种群。每个个体对应于问题的一个解,从初始种群出发,采用基于适应值(由适应度函数产生)比例的选择策略在当前种群中选择个体,使用杂交和变异来产生下一代种群。如此一代代演化下去,直至满足期望的终止条件。利用遗传算法解决系统故障诊断问题的研究有很多,这也表明遗传算法在系统故障诊断方面表现出了良好的效果。但是基于Malek诊断模型的系统故障诊断算法还未见有。
发明内容
本发明的目的在于针对现有技术中的上述问题,基于Malek诊断模型,设计结点状态与比较症候相容的约束方程,提供一种基于Malek模型的系统故障诊断方法,该方法应用到系统故障诊断问题上,能够更加准确、快速地找出目标故障集。
为实现上述发明目的,本发明采用了如下技术方案:
一种基于Malek模型的系统故障诊断方法,包括如下步骤:
步骤1:Malek模型下指定无故障结点方法生成初始种群,所生成的初始种群中的每个个体即一个二进制串对应于多机系统,个体中的每一位即一个二进制位对应于系统中的结点;
步骤2:根据Malek模型设计结点状态的约束方程,设计合适的适应度函数,然后计算种群中个体的适应度,根据适应度判断种群中是否含有适应度值为1的个体,若没有,则执行步骤3;若有,则直接输出系统故障集合,诊断结束;
步骤3:对种群进行如下遗传操作:
3.1选择操作:采用轮盘赌选择方法,计算每个个体的累加选择概率,适应度高的个体优先被选择作为下一代的个体;同时,引入存优操作,用适应度最高的个体替代下一代中适应度最小值对应的个体;
3.2变异操作:采用二进制变异,根据种群中个体每个结点的适应度和变异概率pm随机选择种群中的某个结点进行变异,将0和1之间进行转换;
3.3交叉操作:根据种群中个体的适应度,从种群中随机选择pc·popsize个个体,其中pc表示交叉概率,popsize表示种群中所包含个体的数目;再从剩下种群中随机选择这些个体的配对个体,采取单点交叉方法,随机选择一个交叉点,对两个父串进行交叉操作,得到新的遗传个体;
3.4判断交叉操作后个体中状态为故障的结点数目t是否满足t-可诊断系统,即判断状态为故障的结点数目t是否满足2×t+1≤n条件,若满足,则执行步骤4;若不满足,则重新执行上述步骤3.1~3.3;
步骤4:计算新种群中每个个体的适应度,判断种群中是否含有适应度为1的个体,若有,则直接输出系统故障集合,诊断结束;若没有,则继续让种群循环迭代执行步骤3,直至找出适应度为1的个体。
上述步骤1中采用Malek模型下指定无故障结点方法生成初始种群包括如下步骤:
(1)在包含n个结点的多机系统中,随机指定一个结点k的状态为无故障;
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于广西大学,未经广西大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201611037746.5/2.html,转载请声明来源钻瓜专利网。
- 上一篇:终端设备及其开机方法
- 下一篇:一种星载嵌入式软件代码自校验纠错方法