[发明专利]图像自动裁剪方法有效

专利信息
申请号: 201611041091.9 申请日: 2016-11-21
公开(公告)号: CN106650737B 公开(公告)日: 2020-02-28
发明(设计)人: 黄凯奇;赫然;考月英 申请(专利权)人: 中国科学院自动化研究所
主分类号: G06K9/34 分类号: G06K9/34;G06N3/08;G06K9/62
代理公司: 北京瀚仁知识产权代理事务所(普通合伙) 11482 代理人: 宋宝库
地址: 100080 *** 国省代码: 北京;11
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 图像 自动 裁剪 方法
【说明书】:

发明涉及一种图像自动裁剪方法。该方法包括:提取待裁剪图像的美感响应图和梯度能量图;对待裁剪图像密集提取候选裁剪图像;基于美感响应图,筛选候选裁剪图像;基于美感响应图和梯度能量图,估计筛选出的候选裁剪图像的构图分数,并将得分最高的候选裁剪图像确定为裁剪图像。本方案利用美感响应图去探究图片的美感影响区域,利用美感响应图确定美感保留部分,从而更加最大程度地保留了裁剪图像的高美感质量,同时本方案还利用梯度能量图去分析梯度分布规则,并且基于美感响应图和梯度能量图来评估裁剪图的构图分数。本发明实施例弥补了图像构图表达的缺陷,解决了如何提高图像自动裁剪的鲁棒性和精度的技术问题。

技术领域

本发明涉及模式识别、机器学习及计算机视觉技术领域,特别涉及一种图像自动裁剪方法。

背景技术

随着计算机技术和数字媒体技术的快速发展,人们对计算机视觉、人工智能、机器感知等领域的需求与期盼也越来越高。图像的自动裁剪作为图像自动编辑中的一项非常重要和常见的任务也得到越来越多的关注和发展。图像自动裁剪技术就是希望能够去除多余的区域,强调感兴趣区域,从而提高图像的整体构图和美感质量。一种有效并且自动的图像裁剪方法不仅能够使人类从繁琐的工作中解放出来,而且还能给一些非专业人士提供一些专业的图像编辑的建议。

由于图像裁剪是一项非常主观性的任务,现有的规则很难考虑所有影响因素。传统的图像自动裁剪区域通常使用显著性图来识别图像中的主要区域或感兴趣区域,同时通过制定的一些规则来计算能量函数最小化或学习分类器来寻找裁剪区域。但是这些制定的规则对图像裁剪这一主观性的任务并不够全面,精度也很难达到用户需求。

有鉴于此,特提出本发明。

发明内容

为了解决现有技术中的上述问题,即为了解决如何提高图像自动裁剪的鲁棒性和精度的技术问题而提供一种图像自动裁剪方法。

为了实现上述目的,提供了以下技术方案:

一种图像自动裁剪方法,所述方法包括:

提取待裁剪图像的美感响应图和梯度能量图;

对所述待裁剪图像密集提取候选裁剪图像;

基于所述美感响应图,筛选所述候选裁剪图像;

基于所述美感响应图和所述梯度能量图,估计筛选出的候选裁剪图像的构图分数,并将得分最高的候选裁剪图像确定为裁剪图像。

进一步地,所述提取待裁剪图像的美感响应图和梯度能量图,具体包括:

利用深度卷积神经网络和类别响应映射方法,并采用如下公式提取所述待裁剪图像的所述美感响应图:

其中,所述M(x,y)表示在空间位置(x,y)处的美感响应值;所述K表示深度卷积神经网络的最后一层卷积层的特征图的总通道个数;所述k表示第k个通道;所述fk(x,y)表示所述第k个通道在所述空间位置(x,y)处的特征值;所述wk表示所述第k个通道的特征图池化后的结果到高美感类别的权值;

对所述待裁剪图像进行平滑处理,并计算每个像素点的梯度值,从而得到所述梯度能量图。

进一步地,所述深度卷积神经网络通过以下方式训练得到:

在所述深度卷积神经网络结构的底层设置卷积层;

在所述深度卷积神经网络结构的最后一个卷积层之后通过全局平均池化的方法,将每一特征图池化为一个点;

连接与美感质量分类类别数相同的全连接层和损失函数。

进一步地,所述基于所述美感响应图,筛选所述候选裁剪图像,具体包括:

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于中国科学院自动化研究所,未经中国科学院自动化研究所许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/201611041091.9/2.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top