[发明专利]基于GRU的光伏电站辐照度中长期预测的方法及装置在审
申请号: | 201611042402.3 | 申请日: | 2016-11-24 |
公开(公告)号: | CN106651007A | 公开(公告)日: | 2017-05-10 |
发明(设计)人: | 马中静;汪小娟;王鹏;邵云峰;陆志成;杨楠 | 申请(专利权)人: | 北京理工大学 |
主分类号: | G06Q10/04 | 分类号: | G06Q10/04;G06Q10/06;G06Q50/06;G06N3/04 |
代理公司: | 北京理工正阳知识产权代理事务所(普通合伙)11639 | 代理人: | 唐华 |
地址: | 100081 *** | 国省代码: | 北京;11 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 基于 gru 电站 辐照 中长期 预测 方法 装置 | ||
1.一种基于GRU的光伏电站辐照度中长期预测的方法,其特征在于:包括如下步骤:
步骤一:采集光伏电站所在位置的太阳辐照度数据;
步骤二:将步骤一中采集光伏电站所在位置的太阳辐照度数据载入基于GRU门限递归单元神经网络模型,将采集的光伏电站所在位置的太阳辐照度数据分为训练集、验证集和测试集;基于GRU门限递归单元神经网络模型对所述光伏电站辐照度进行预测,根据辐照度的训练集预测值和训练集真实值进行比较,得到训练集预测误差;通过误差反向传播(Error Back Propagation,BP)算法利用训练集预测误差更新所述GRU门限递归单元神经网络模型的网络参数;
步骤三:将步骤二得到的网络参数带入基于GRU门限递归单元神经网络模型,通过基于GRU门限递归单元神经网络模型的测试集测试基于GRU门限递归单元神经网络模型的预测能力,从而将最终得到的基于GRU门限递归单元神经网络模型用于预测光伏电站所在位置的太阳辐照度。
2.如权利要求1所述的一种基于GRU的光伏电站辐照度中长期预测的方法,其特征在于,还包括步骤四:电力部门根据步骤三得到的辐照度预测结果进行中长期规划和调度,实现资源的合理利用,减少不合理增加装机量造成的设备损耗等问题。
3.如权利要求1或2所述的一种基于GRU的光伏电站辐照度中长期预测的方法,其特征在于:所述的步骤二中基于GRU门限递归单元神经网络模型包括输入层、隐藏层和输出层,其中隐藏层包括更新门和重置门,通过公式(1)至(5),根据xt和ht-1进行更新ht:
zt=σ(Wzxxt+Wzhht-1+bz) (1)
rt=σ(Wrxxt+Wrhht-1+br) (2)
gt=rt⊙ht-1(3)
其中,x和h为所述隐藏层的输入和输出,z和r分别为所述更新门和重置门,如何组合新输入和之前的记忆由重置门决定,留下多少之前的记忆由更新门决定;W为权重矩阵,b为偏置向量;σ为sigmoid函数,⊙为向量按元素的乘积;所述sigmoid函数和tanh函数的计算公式分别为sigmoid(x)=1/(1+e-x)和tanh(x)=(ex-e-x)/(ex+e-x)。
4.如权利要求3所述的一种基于GRU的光伏电站辐照度中长期预测的方法,其特征在于:所述训练集和验证集用于训练基于GRU门限递归单元神经网络模型,所述测试集用于测试基于GRU门限递归单元神经网络模型的预测能力;其中,通过误差反向传播(Error Back Propagation,BP)算法利用训练集预测误差更新所述GRU门限递归单元神经网络模型的网络参数;验证集用于减少过度拟合,如果训练集的误差减小而验证集的误差不变或者增大,那么基于GRU门限递归单元神经网络模型出现过拟合,基于GRU门限递归单元神经网络模型应该停止训练。
5.如权利要求3所述的一种基于GRU的光伏电站辐照度中长期预测的方法,其特征在于:所述的步骤一中采集光伏电站所在位置的太阳辐照度数据为历史实测值。
6.如权利要求5所述的一种基于GRU的光伏电站辐照度中长期预测的方法,其特征在于:所述的中长期预测结果指1周以上的光伏电站辐照度预测。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于北京理工大学,未经北京理工大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201611042402.3/1.html,转载请声明来源钻瓜专利网。
- 同类专利
- 专利分类
G06Q 专门适用于行政、商业、金融、管理、监督或预测目的的数据处理系统或方法;其他类目不包含的专门适用于行政、商业、金融、管理、监督或预测目的的处理系统或方法
G06Q10-00 行政;管理
G06Q10-02 .预定,例如用于门票、服务或事件的
G06Q10-04 .预测或优化,例如线性规划、“旅行商问题”或“下料问题”
G06Q10-06 .资源、工作流、人员或项目管理,例如组织、规划、调度或分配时间、人员或机器资源;企业规划;组织模型
G06Q10-08 .物流,例如仓储、装货、配送或运输;存货或库存管理,例如订货、采购或平衡订单
G06Q10-10 .办公自动化,例如电子邮件或群件的计算机辅助管理