[发明专利]一种卷积神经网络模型参数处理方法及系统在审
申请号: | 201611051944.7 | 申请日: | 2016-11-24 |
公开(公告)号: | CN106779051A | 公开(公告)日: | 2017-05-31 |
发明(设计)人: | 陈书楷;朱思霖 | 申请(专利权)人: | 厦门中控生物识别信息技术有限公司 |
主分类号: | G06N3/04 | 分类号: | G06N3/04;G06N3/08 |
代理公司: | 深圳中一专利商标事务所44237 | 代理人: | 阳开亮 |
地址: | 361000 福建省厦门市*** | 国省代码: | 福建;35 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 一种 卷积 神经网络 模型 参数 处理 方法 系统 | ||
技术领域
本发明属于人工智能技术领域,尤其涉及一种卷积神经网络模型参数处理方法及系统。
背景技术
卷积神经网络是近年来广泛应用在模式识别、图像处理领域的一种高效识别算法,它的权值共享网络结构使之更类似于生物神经网络,降低了网络的复杂度,以二维图像直接作为网络的输入,避免了传统算法中复杂的特征提取和数据重建过程。
卷积神经网络(Convolutional neural network,CNN)模型中含有大量参数,这不但使得在训练中容易发生过拟合问题,更重要的是,如此多的参数使得其在应用时存在计算量巨大且计算效率低下的问题。
发明内容
有鉴于此,本发明实施例提供了一种卷积神经网络模型参数处理方法及系统,以解决现有技术中卷积神经网络模型的模型参数过多导致的应用时计算量巨大且计算效率低下的问题。
为了解决上述技术问题,第一方面,本发明实施例提供了一种卷积神经网络模型参数处理方法,包括:
获取第一卷积神经网络模型及阈值因子;
提取所述第一卷积神经网络模型每一数据层中的权重信息,所述权重信息包括权重及权重的数目;
通过预设的阈值计算方法,利用所述权重及所述阈值因子计算得出每一数据层的阈值;
通过预设的置零化处理方法,利用所述每一数据层的阈值,对所述第一卷积神经网络模型每一数据层中的权重进行置零化处理,得到第二卷积神经网络模型,并记录被置零的权重的总数目;
根据所述被置零的权重的总数目及所述第一卷积神经网络模型中所有数据层权重的总数目计算权重置零率;
对所述第二卷积神经网络模型进行训练及测试,记录测试结果;
根据所述测试结果及所述权重置零率,判断所述第二卷积神经网络模型是否满足测试结果要求及权重置零率要求:若满足要求,则输出所述第二卷积神经网络模型;
若不满足要求,则将第二卷积神经网络模型作为第一卷积神经网络模型,重新获取该第一卷积神经网络模型的阈值因子,返回执行所述提取所述第一卷积神经网络模型每一数据层中的权重信息的操作。
进一步地,在所述的获取第一卷积神经网络模型及阈值因子之前还包括:获取第三卷积神经网络模型及衰减系数;
通过所述衰减系数对所述第三卷积神经网络模型进行处理,得到第一卷积神经网络模型。
进一步地,所述通过预设的阈值计算方法,利用所述权重及所述阈值因子计算得出每一数据层的阈值包括:
计算出数据层的权重的标准差;将所述标准差乘以该数据层所对应的所述阈值因子,得出该数据层对应的阈值。
进一步地,所述通过预设的置零化处理方法,利用所述的阈值,对所述第一卷积神经网络模型每一数据层中的权重进行置零化处理包括:
判断权重与该权重所处数据层对应的阈值的大小关系:若权重小于该权重所处数据层对应的阈值,则将权重置零;若权重不小于该权重所处数据层对应的阈值,则保持权重不变。
进一步地,所述记录被置零的权重的总数目同时还包括:
记录被置零的权重的位置。
第二方面,本发明实施例提供了一种卷积神经网络模型参数处理系统,包括:
第一获取单元,用于获取第一卷积神经网络模型及阈值因子;
提取单元,用于提取所述第一卷积神经网络模型每一数据层中的权重信息,所述权重信息包括权重及权重的数目;
第一计算单元,用于通过预设的阈值计算方法,利用所述权重及所述阈值因子计算得出每一数据层的阈值;
第一处理单元,用于通过预设的置零化处理方法,利用所述每一数据层的阈值,对所述第一卷积神经网络模型每一数据层中的权重进行置零化处理,得到第二卷积神经网络模型,并记录被置零的权重的总数目;
第二计算单元,根据所述被置零的权重的总数目及所述第一卷积神经网络模型中所有数据层权重的总数目计算权重置零率;
操作单元,用于对所述第二卷积神经网络模型进行训练及测试,记录测试结果;
判别单元,用于根据所述测试结果及所述权重置零率,判断所述第二卷积神经网络模型是否满足测试结果要求及权重置零率要求:若满足要求,则输出所述第二卷积神经网络模型;
若不满足要求,则将第二卷积神经网络模型作为第一卷积神经网络模型,重新获取该第一卷积神经网络模型的阈值因子,返回执行所述提取所述第一卷积神经网络模型每一数据层中的权重信息的操作。
进一步地,在第一获取单元之前还包括:
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于厦门中控生物识别信息技术有限公司,未经厦门中控生物识别信息技术有限公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201611051944.7/2.html,转载请声明来源钻瓜专利网。