[发明专利]基于漏斗变换的图像直线检测方法有效
申请号: | 201611055438.5 | 申请日: | 2016-11-25 |
公开(公告)号: | CN106778822B | 公开(公告)日: | 2020-04-10 |
发明(设计)人: | 冯大政;王际凯;魏倩茹 | 申请(专利权)人: | 西安电子科技大学 |
主分类号: | G06K9/62 | 分类号: | G06K9/62;G06T7/13 |
代理公司: | 西安睿通知识产权代理事务所(特殊普通合伙) 61218 | 代理人: | 惠文轩 |
地址: | 710071*** | 国省代码: | 陕西;61 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 基于 漏斗 变换 图像 直线 检测 方法 | ||
技术领域
本发明属于图像处理领域,涉及一种基于漏斗变换的图像直线检测方法,适用于基于漏斗变换的直线检测过程。
背景技术
当今社会,人类获取信息的手段多种多样,图像作为其中相对直观的一种方式尤为重要。图像处理(image processing),是用计算机对图像进行分析,以达到所需结果的技术,又称影像处理,是一个正在蓬勃发展的研究领域;图像处理一般指数字图像处理,数字图像是指用工业相机、摄像机、扫描仪等设备经过拍摄得到的一个大的二维数组,该数组的元素称为像素,其值称为灰度值。图像处理技术的一般包括图像压缩,增强和复原,匹配、描述和识别3个部分,其中特征识别和提取作为关键步骤尤其重要。图像处理中常用的特征有很多,比如边缘、直线、角点、曲线等。其中直线比较普遍,构成了图像中的一类重要特征;图像中的直线是人们对图像的一种重要的理解,常常对应着待检测物体中某些特征,例如生活中笔直的马路、一柱擎天的高楼等等,然后通过检测技术将这些特征对应的直线提取出来,方便识别具体的目标;因此,图像中的直线作为构成几何图形的最基本元素,能够很好地帮助人们识别目标物体。
图像中的物体和场景很多都包含了直线的结构,比如建筑物、机场跑道、桥梁、公路等。直线特征携带了很多重要的图像信息,因此在图像中准确地提取直线特征就显得尤为重要。直线检测问题是图像处理、模式识别和计算机视觉等领域一类经典的中间层次的问题,直线检测算法分为霍夫变换类直线检测方法和非霍夫变换类直线检测方法。
霍夫变换类直线检测方法多使用图像的全局信息进行直线检测,现有最著名的数字图像直线检测方法为标准霍夫变换(Standard Hough Transform,SHT)方法,该标准霍夫变换方法是一种利用图像全局信息来检测直线的方法,计算复杂度比较大,存储需求也很大,并且检测准确率容易受到分辨率和噪声的影响;针对标准霍夫变换方法存在的问题,学者们在标准霍夫变换方法的基础之上提出了基于傅里叶变换的霍夫变换方法(Forier-based HT,FHT)、自适应霍夫变换、快速霍夫变换等方法,上述方法统称为霍夫变换类直线检测方法,霍夫变换类直线检测方法的基本思想是基于一个假设检验的过程,即原始图像坐标系下的一条直线对应参数空间中的一个点,相对应的,参数空间内的一个点对应原始图像坐标系中的一条直线,这样原始图像坐标系中的一条直线由于斜率和截距相同,因而对应参数空间中的同一个点。
霍夫变换类直线检测方法做出如下的假设:利用极坐标表示原始图像,极坐标系下的原始图像中包含若干条直线,每条直线可以用一个参数空间内的参数对唯一标示,每个参数对对应着一个累计单元,每个累积单元都对应着一条假定的直线,而每条假定的直线上的像素点在经过霍夫变换后都能够对某条假定的直线成为真正的直线提供支持(表现在数值上)。显然真实直线得到的“支持票”要大于虚假直线的票值;进而可将原始图像空间的直线转化为带有票值的参数空间内的局部极大累计单元。最后利用峰值检测方法,即提取参数空间中的局部极大值,提取所述局部极大值对应的直线。以上所述为霍夫变换类直线检测方法通常包括的图像边缘像素提取(边缘检测)、投票累积和峰值检测三个过程;明显地,霍夫变换类直线检测方法在实现时都依赖于边缘检测算法,也就是说霍夫变换类直线检测方法的性能往往会受到边缘检测算法性能的制约和影响,这也是该霍夫变换类直线检测方法的主要问题。
与霍夫变换类方法不同的是,非霍夫变换类方法通过使用图像的局部信息进行直线检测,该非霍夫变换类方法更适合于直线段的检测,其中最著名的是线性时间线段检测算子(Linear-time line segment detector,LSD)算法。LSD算法是一种直线检测分割算法,能在线性的时间内得出亚像素级精度的检测结果;该LSD算法能够在任何数字图像上都无需参数调节,并能够自己控制误检数量:平均而言,每张图有一个误检。使用LSD算法的目标在于检测图像中局部的直线轮廓,经过简单的连接过程就能够获得检测图像中的直线;LSD算法的主要优点是计算量低,且检测错误率比较低,不足是对遮挡比较敏感,这也是LSD算法的主要问题所在。
发明内容
针对以上现有技术存在的不足,本发明提出了一种基于漏斗变换的图像直线检测方法,该种基于漏斗变换的图像直线检测方法利用直线的斜截式方程,将原始二维图像空间内的直线映射为参数空间中的局部极大值点,能够直接得出与局部极大值点相对应的直线,并利用漏斗变换能够快速且有效地检测出原始二维图像中的直线信息,实现本发明的目的。
为达到上述技术目的,本发明采用如下技术方案予以实现。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于西安电子科技大学,未经西安电子科技大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201611055438.5/2.html,转载请声明来源钻瓜专利网。
- 彩色图像和单色图像的图像处理
- 图像编码/图像解码方法以及图像编码/图像解码装置
- 图像处理装置、图像形成装置、图像读取装置、图像处理方法
- 图像解密方法、图像加密方法、图像解密装置、图像加密装置、图像解密程序以及图像加密程序
- 图像解密方法、图像加密方法、图像解密装置、图像加密装置、图像解密程序以及图像加密程序
- 图像编码方法、图像解码方法、图像编码装置、图像解码装置、图像编码程序以及图像解码程序
- 图像编码方法、图像解码方法、图像编码装置、图像解码装置、图像编码程序、以及图像解码程序
- 图像形成设备、图像形成系统和图像形成方法
- 图像编码装置、图像编码方法、图像编码程序、图像解码装置、图像解码方法及图像解码程序
- 图像编码装置、图像编码方法、图像编码程序、图像解码装置、图像解码方法及图像解码程序