[发明专利]基于增量自步学习和区域色彩量化的金丝猴面部检测方法有效

专利信息
申请号: 201611059354.9 申请日: 2016-11-25
公开(公告)号: CN106709425B 公开(公告)日: 2020-07-14
发明(设计)人: 许鹏飞;郭松涛;陈晓江;袁晶;何刚;陈峰;李保国;房鼎益 申请(专利权)人: 西北大学
主分类号: G06K9/00 分类号: G06K9/00;G06K9/34;G06K9/62
代理公司: 西安恒泰知识产权代理事务所 61216 代理人: 李婷
地址: 710069 *** 国省代码: 陕西;61
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 基于 增量 学习 区域 色彩 量化 金丝猴 面部 检测 方法
【说明书】:

发明公开了一种基于增量自步学习和区域色彩量化的金丝猴面部检测方法,区域色彩量化用以增大背景与猴身色彩特征之间的差异,以更准确地进行猴身区域的分割,减少检测的猴身疑似区域的面积和个数。然后,在检测出猴身之后的区域内,进行面部皮肤疑似区域检测;最后利用提出的增量自步学习进行面部的准确检测。

技术领域

本发明涉及一种基于增量自步学习和区域色彩量化的金丝猴面部检测方法。

背景技术

面部特征在动物个体识别研究中已有较多的研究成果,这些成果较多采用人脸检测与识别的方法来解决动物面部检测与识别过程中存在的问题,其中有关于猴类(主要是针对猕猴)面部特征的提取与定位算法。但这些方法只是利用传统的图像分割方法,在一定的条件下的图像中简单实现猴类面部区域的粗糙定位,不具有较高的精确性和通用性。而基于面部特征的动物个体识别方法基本都是直接(或稍加改进)地应用现有的人脸检测与识别的方法。现有技术中,在将现有的人脸检测和识别方法直接应用于动物面部检测与识别中存在诸多问题。

在野外获取的金丝猴图像的场景大小不一,而不同场景下所含有的背景的复杂情况多变。在小场景情况下,金丝猴猴身能够具有较多的信息量,此外,其毛发部分的色彩与背景之间存在一定的差异。而在大场景情况下,背景信息占据图像的较大部分信息量,传统的基于像素级的色彩量化方法不再适用,主要原因是背景中含有较多的与猴身毛发色彩接近的像素点,经过色彩量化分割后的猴身疑似区域太多,不利于面部疑似区域的快速检测。

发明内容

针对上述现有技术中存在的问题或缺陷,本发明的目的在于,提供一种基于增量自步学习和区域色彩量化的金丝猴面部检测方法,其能够实现金丝猴面部的准确检测。

为了实现上述目的,本发明采用如下技术方案:

基于增量自步学习和区域色彩量化的金丝猴面部检测方法,包括以下步骤:

步骤一,利用摄像机对多个场景中的金丝猴进行拍摄,得到多张包含有金丝猴的待检测RGB图像;针对每一张RGB图像均利用色彩空间转换方法将其转换为待检测HSV图像;重新利用摄像机对多个场景中的金丝猴进行拍摄,得到多张包含有金丝猴的RGB图像,提取多张金丝猴的面部皮肤样本图像和多张金丝猴的毛发样本图像;针对每一张面部皮肤样本图像和毛发样本图像,均利用色彩空间转换方法分别将其转换为面部皮肤样本HSV图像和毛发样本HSV图像;

步骤二,针对每一张待检测HSV图像进行色彩量化,得到待检测的色彩量化后的单通道图像;针对每一张面部皮肤样本HSV图像和毛发样本HSV图像,进行色彩量化,得到所有面部皮肤样本图像的色彩量化后的单通道图像和所有毛发样本图像的色彩量化后的单通道图像;

步骤三,针对所有面部皮肤样本图像的色彩量化后的单通道图像,利用数学统计的方法得到面部皮肤色彩量化范围,针对所有毛发样本图像的色彩量化后的单通道图像,利用数学统计的方法得到面部毛发色彩量化范围;

步骤四,针对步骤二得到的每一张待检测的色彩量化后的单通道图像,利用步骤三得到的面部皮肤色彩量化范围和毛发色彩量化范围,进行图像分割,以得到疑似猴脸图像;

步骤五,采用增量自步学习方法训练得到分类器模型;

步骤六,针对步骤四得到的每一张疑似猴脸图像,进行图像尺寸归一化,得到归一化后的疑似猴脸图像;将归一化后的疑似猴脸图像均输入到步骤五得到的分类器模型内,输出疑似猴脸图像为猴脸图像还是非猴脸图像。

具体地,所述步骤二中的针对每一张待检测HSV图像进行色彩量化,得到待检测的色彩量化后的单通道图像;所述色彩量化包括像素级色彩量化,所述的待检测的色彩量化后的单通道图像指的是像素级色彩量化后的单通道图像,具体包括以下步骤:

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于西北大学,未经西北大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/201611059354.9/2.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top