[发明专利]基于高斯混合模型的刚体目标在线特征分类与跟踪方法有效

专利信息
申请号: 201611064798.1 申请日: 2016-11-28
公开(公告)号: CN106778831B 公开(公告)日: 2020-04-24
发明(设计)人: 苗权;王贵锦;李晗;吴昊;李锐光;程光 申请(专利权)人: 国家计算机网络与信息安全管理中心
主分类号: G06K9/62 分类号: G06K9/62;G06K9/46
代理公司: 北京君尚知识产权代理有限公司 11200 代理人: 邱晓锋
地址: 100029*** 国省代码: 北京;11
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 基于 混合 模型 刚体 目标 在线 特征 分类 跟踪 方法
【说明书】:

发明涉及一种基于高斯混合模型的刚体目标在线特征分类与跟踪方法。该方法包括以下步骤:1)在初始图像中选定感兴趣的目标区域,并在目标区域检测SURF特征;2)为每个SURF特征创建分类器;3)在新图像到来时,利用分类器对初始图像中的SURF特征与新图像检测到的SURF特征进行匹配,形成匹配点对;在分类器的匹配过程中,采用基于高斯混合模型的在线分类机制判别正样本和负样本;4)根据匹配点对,采用随机采样一致性算法计算得出运动参数,从而确定当前图像的目标区域,实现目标跟踪。本发明能够应对视频中复杂的场景变化,保证跟踪的自适应能力,实现稳定连续、现实可用的目标跟踪。

技术领域

本发明属于计算机视觉技术领域,具体涉及一种基于高斯混合模型的在线特征分类与跟踪方法。

背景技术

刚体目标表面任意一点的运动都可以代表整体的运动,使得利用目标区域内的特征来描述目标运动成为可能。已有的刚体目标跟踪方法致力于提取参考图像目标区域内具有不变性的某些特征,并对提取的特征进行量化和描述,如颜色特征、纹理特征、光流特征。局部特征是指在图像区域内检测到的局部具有不变性、可重现性和特异性的特征,能够在一定程度上抵抗遮挡、尺度、旋转等复杂变化,并提供对特征的定量描述。目前,相比其他特征,局部特征在不变性和特异性方面优势愈发明显,使其更加深入的应用在目标跟踪中。在当前帧到来时,首先对整个区域提取局部特征并描述。进而,通过局部特征的匹配找到同上一目标内局部特征的候选对应集。借助随机采样一致性算法(RANSAC),去除不正确的对应特征集,估计出运动变换参数,实现目标跟踪。图1给出了基于特征的跟踪方法框图,其主要思路在于将跟踪看成是局部特征匹配问题。

目前,SURF(Speed-up Robust Feature,加速鲁棒特征)特征是应用较多且效果较为理想的局部特征之一,主要引入积分图像快速算法,并通过执行加减法运算近似得到高斯二阶微分的响应值。SURF算法主要包括特征检测和特征描述两方面。特征检测通过快速计算每个特征的尺度和主方向,并且圈定以检测点为中心的尺度旋转不变对称邻域;特征描述在该不变性邻域内进行Haar特征计算,并最终形成64维特征向量。不同图像之间的SURF特征匹配主要是通过比较特征向量之间的距离实现的。运动模型构建是通过SURF特征匹配完成的。假设x和x分别代表不同图像之间的对应SURF特征点,则二者之间有如下的关系:

其中,W(x,h)是透视变换函数,h=(h1,...h8)T是运动参数。具体表示如下:

得出运动参数后,将初始帧的目标区域边界进行相应的透视变换,得到当前帧的目标区域。

视频中常见的复杂场景变化主要包括以下3种:

(1)几何变化。在视频的感兴趣区域内,物体的自身轴转,会引起视角发生变化;物体发生旋转或摄像机存在转动时,视觉中就会产生旋转变化;当场景和摄像机之间的相对距离发生变化时,场景中就会产生尺度变化;当上述的变化同时发生时,就会产生仿射或者透视变化。图2给出了几何变化的示例。

(2)灰度变化。当光源或者拍摄物体表面反射条件发生变化时,会引起光照的变化,相关的图像区域灰度也会相应变化,对特征匹配造成影响。此外,当感兴趣区域被其他物体遮挡时,阴影区域也会产生灰度变化。

(3)其他变化。当物体突然快速运动或摄像机剧烈抖动时,场景会出现模糊现象,会影响特征检测和描述。此外,在区分目标和背景的视频中,如果背景中包含与目标相似的区域,也会影响特征的匹配。

在视频中,场景经常会出现以上的一种或多种变化,对局部特征的匹配造成了严重的干扰。现有技术沿用和静态图像相同的局部特征匹配方法,无法适应发生剧烈变化的场景,也没有体现与场景连续性变化相对应的自适应性。

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于国家计算机网络与信息安全管理中心,未经国家计算机网络与信息安全管理中心许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/201611064798.1/2.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top