[发明专利]一种提高遗传算法的时间效率的方法及装置、用户设备在审

专利信息
申请号: 201611137670.3 申请日: 2016-12-12
公开(公告)号: CN106779077A 公开(公告)日: 2017-05-31
发明(设计)人: 贝振东;喻之斌;曾经纬;须成忠;张慧玲 申请(专利权)人: 深圳先进技术研究院
主分类号: G06N3/12 分类号: G06N3/12
代理公司: 深圳市科进知识产权代理事务所(普通合伙)44316 代理人: 赵勍毅
地址: 518055 广东省深圳*** 国省代码: 广东;44
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 一种 提高 遗传 算法 时间 效率 方法 装置 用户 设备
【权利要求书】:

1.一种提高遗传算法的时间效率的方法,其特征在于,包括:

获取第一种群和第一种群的适应度矩阵及适应度平均值,并进入遗传算法的迭代搜索过程;

将第一种群通过遗传算法计算产生第二种群;

将第二种群通过机器学习回归模型进行适应度预测及遗传算法进行计算,直至产生第三种群,其中,第三种群中所有个体的适应度都大于所述适应度平均值;所述机器学习回归模型是根据初始种群的适应度矩阵选取的机器学习算法构建的,用于对种群的适应度预测;

判断第三种群是否为最优解,如果不是最优解,则视第三种群为新的第一种群获取其适应度矩阵及适应度平均值进入下一个遗传算法的迭代搜索过程,直至得到最优解。

2.根据权利要求1所述的方法,其特征在于,所述获取第一种群和第一种群的适应度矩阵及适应度平均值的步骤包括:

随机产生初始种群作为第一种群;

根据预设的适应度评估函数对第一种群进行适应度评估,并计算得到第一种群适应度矩阵及适应度平均值。

3.根据权利要求2所述的方法,其特征在于,所述根据预设的适应度评估函数对所述初始种群进行适应度评估,并计算得到初始种群适应度矩阵及种群适应度平均值的步骤之后还包括:

根据初始种群的适应度矩阵构建关于适应度预测的机器学习回归模型,所述机器学习回归模型用于对种群的适应度预测。

4.根据权利要求3所述的方法,其特征在于,所述根据初始种群的适应度矩阵构建关于适应度预测的机器学习回归模型的步骤包括:

通过五折的交叉验证的方法进行机器学习算法的验证手段,从机器学习算法中选择精度最高的机器学习算法作为构建关于适应度值的模型的算法,构建出关于适应度预测的机器学习回归模型。

5.根据权利要求1-4所述的方法,其特征在于,所述将第二种群通过机器学习回归模型进行适应度预测及遗传算法进行计算,直至产生第三种群的步骤包括:

将第二种群通过机器学习回归模型进行适应度预测,并将适应度低于所述适应度平均值的个体通过遗传算法产生新的个体,再将新的个体通过所述机器学习回归模型进行适应度预测,直至产生第三种群,其中,第三种群中所有个体的适应度都大于所述适应度平均值。

6.一种提高遗传算法的时间效率的装置,其特征在于,包括:

获取模块,用于获取第一种群和第一种群的适应度矩阵及适应度平均值,并进入遗传算法的迭代搜索过程;以及获取第三种群的适应度矩阵及适应度平均值,并进入下一个遗传算法的迭代搜索过程;

第二种群产生模块,用于将第一种群通过遗传算法计算产生第二种群;

第三种群产生模块,用于将第二种群通过机器学习回归模型进行适应度预测及遗传算法进行计算,直至产生第三种群,其中,第三种群中所有个体的适应度都大于所述适应度平均值;所述机器学习回归模型是根据初始种群选取的机器学习算法构建的,用于对种群的适应度预测;

判断模块,用于第三种群是否为最优解。

7.根据权利要求6所述的装置,其特征在于,所述获取模块包括:

初始种群产生单元,用于随机产生初始种群作为第一种群;

适应度评估单元,用于根据预设的适应度评估函数对第一种群进行适应度评估,并计算得到第一种群适应度矩阵及适应度平均值。

8.根据权利要求7所述的装置,其特征在于,所述装置还包括:

机器学习回归模型构建模块,用于根据初始种群的适应度矩阵构建关于适应度预测的机器学习回归模型,所述机器学习回归模型用于对种群的适应度预测。

9.根据权利要求8所述的装置,其特征在于,所述第三种群产生模块包括:

适应度预测单元,用于将第二种群通过机器学习回归模型进行适应度预测;

新个体产生单元,用于将适应度低于所述适应度平均值的个体通过遗传算法产生新的个体;

其中,所述适应度预测单元还用于将新个体产生单元产生的新的个体通过所述机器学习回归模型进行适应度预测。

10.一种用户设备,其特征在于,包括权利要求6~9任意一项所述的提高遗传算法的时间效率的装置。

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于深圳先进技术研究院,未经深圳先进技术研究院许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/201611137670.3/1.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top