[发明专利]基于传播滤波的单幅图像去雾方法有效

专利信息
申请号: 201611194972.4 申请日: 2016-12-22
公开(公告)号: CN107085830B 公开(公告)日: 2020-04-07
发明(设计)人: 汤红忠;朱玲;王翔;王艳东;李骁;毛丽珍 申请(专利权)人: 湘潭大学
主分类号: G06T5/00 分类号: G06T5/00
代理公司: 上海精晟知识产权代理有限公司 31253 代理人: 熊娴;冯子玲
地址: 411105 *** 国省代码: 湖南;43
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 基于 传播 滤波 单幅 图像 方法
【说明书】:

发明提供一种基于传播滤波的单幅图像去雾方法,首先通过双区域滤波法估计初始大气透射率,再以最小颜色通道图作为参考图像,结合传播滤波法得到优化后的大气透射率,最后采用自适应方法优化的大气光强度,基于大气散射模型实现无雾图像的恢复。与现有技术相比,本发明的优势在于,能得到更为精确的大气透射率,可以改善现有的图像去雾方法中景深突变边缘的去雾残留问题,同时边缘细节得到有效保持,局部纹理区域具有较好的空间平滑性。

技术领域

本发明涉及计算机图像处理领域,具体涉及一种单幅图像去雾技术,尤其是一种结合最小颜色通道图与传播滤波的单幅图像去雾的方法。

背景技术

近几年空气质量退化严重,雾霾等恶劣天气出现频繁,PM2.5值越来越引起人们的广泛关注。在有雾天气下拍摄的图像模糊不清,清晰度不够,细节不明显,色彩保真度下降,出现严重的颜色偏移和失真,达不到满意的视觉效果。由此限制和影响了室外目标识别和跟踪、智能导航、公路视觉监视、卫星遥感监测、军事航空侦查等系统效用的发挥,给生产与生活等各方面都造成了极大的影响。

以公路监控为例,由于大雾弥漫,道路的能见度大大降低,司机通过视觉获得的路况信息往往不准确,进一步影响对环境的判读,很容易发生交通事故,此时高速封闭或公路限行,给人们的出行带来了极大的不便。故现在迫切需要对雾天图像进行有效的去雾处理。

图像去雾算法目前已取得较大的进展,主要可分为两大类:第一类是基于图像增强的图像去雾方法,如直方图均衡化算法、基于小波变换的图像增强算法和基于Retinex理论的图像增强算法等,这类算法并不考虑图像退化模型及降质原因,仅从图像处理的角度提高图像对比度,因此容易造成图像的信息丢失,并不能从根本上去雾;第二类是基于物理模型的图像去雾方法,该类方法主要基于大气散射模型,研究雾天图像降质的物理过程,再反推恢复景物无雾图像,例如,Fattal等假设大气透射率和场景目标局部区域的反射率两者不相关,从而估算大气透射率及场景的辐照度,取得了一定的复原效果,但该方法不适用于浓雾天气下的图像去雾。He等提出了基于暗原色先验的图像去雾方法,该方法首先根据暗原色先验信息估算大气透射率,再采用软抠图算法对大气透射率进行细化,从而复原图像,但该算法时间复杂度大。因此Gibson等提出用中值滤波估计大气散射函数,从而实现图像恢复,但该方法容易导致边缘信息丢失,造成去雾后图像的黑斑效应。He等后续提出采用引导滤波代替软抠图实现透射率的优化,该图像复原的速度大大加快,但因采用原图作为引导图像,容易导致图像去雾残留较大。此外,Zhang等则提出采用双区域滤波代替中值滤波来估算大气透射率,该方法能在一定程度上能改善黑斑效应,但通过实验可观察到在图像景深突变密集的边缘区域,该算法的透射率估值容易出现偏差,边缘区域去雾不彻底,如图9(c)所示。

综上,现有的图像去雾方法无法兼顾图像复原速度快和图像复原质量高的优点,具有一定的局限性。

发明内容

本发明的目的是克服上述现有技术的缺点,提供了一种复原速度快、质量高的图像去雾方法,使用该方法的图像去雾彻底、无黑斑、无残留、清晰度高。

基于传播滤波的单幅图像去雾方法,首先通过双区域滤波法估计初始大气透射率,再以最小颜色通道图作为参考图像,结合传播滤波法得到优化后的大气透射率,最后采用自适应方法优化的大气光强度,基于大气散射模型实现无雾图像的恢复。

优选地,上述方法的步骤如下:

步骤a)对有雾图像进行双区域滤波处理,结合雾、霾环境下的大气散射模型,得到大气初始透射率t′(x);

步骤b)通过最小颜色通道图运用传播滤波器将步骤a所得大气初始透射率t′(x)优化后得到大气透射率t″(x);

步骤c)采用大气光强度的自适应恢复算法,实现对大气光A的估计,结合步骤b所得t″(x)得到无雾图。

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于湘潭大学,未经湘潭大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/201611194972.4/2.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top