[发明专利]基于幅值相位混合建模的图像检索方法在审
申请号: | 201611199740.8 | 申请日: | 2016-12-22 |
公开(公告)号: | CN106815314A | 公开(公告)日: | 2017-06-09 |
发明(设计)人: | 杨红颖;许娜;王向阳;牛盼盼 | 申请(专利权)人: | 辽宁师范大学 |
主分类号: | G06F17/30 | 分类号: | G06F17/30;G06K9/00 |
代理公司: | 大连非凡专利事务所21220 | 代理人: | 闪红霞 |
地址: | 116029 辽宁*** | 国省代码: | 辽宁;21 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 基于 相位 混合 建模 图像 检索 方法 | ||
技术领域
本发明涉及基于内容的图像检索方法,特别涉及一种可有效降低特征的维度,缩减了相似度计算所分配的时间,具有较高的平均检索查准率和较低的时间复杂度的基于幅值相位混合建模的图像检索方法。
背景技术
在信息技术爆炸的今天,互联网文化已经渗透到人们日常生活中,图片信息及多媒体技术的应用促使人们急需优秀的算法与技术来筛选所需信息,因此,如何更加高效并且精准地检索和分类大量的数字图像源是大家共同关注的热点问题,而基于内容的图像检索技术(CBIR)是解决问题的有效技术之一。
CBIR相比较传统的基于文本的图像检索技术(TBIR),优势在于把图像的颜色信息、轮廓纹理信息等视觉感官特征以最优的算法对其进行抽离和变换,通过计算来表征图像,进而对同类图像进行特征匹配和查找,其中特征提取和匹配环节可由软件设备取代人工注释,因此排除了语义的歧义性并减少了工作量,真正意义上实现了人工智能技术在图像检索领域的应用。目前,虽然基于颜色和轮廓纹理信息的图像检索方法已有许多,但轮廓纹理特征分类尚存在诸多难点,使得平均检索率较低、时间复杂度较高,且仅采用单一方法难以实现对所有轮廓纹理特征进行分类。
发明内容
本发明是为了解决现有技术所存在的上述技术问题,提供一种可有效降低特征的维度,缩减了相似度计算所分配的时间,具有较高的平均检索查准率和较低的时间复杂度的基于幅值相位混合建模的图像检索方法。
本发明的技术解决方案是:一种基于幅值相位混合建模的图像检索方法,其特征在于按如下步骤进行:
约定:L指通过PDTDFB滤波器得到的低频子带、H代表高频子带;表示复子带系数;a为的实部子带、b为虚部子带;i为虚数单位;和为Weibull分布概率密度函数的形状参数和尺度参数;和为Vonn分布概率密度函数的位置参数和尺度参数;r表示幅值;P指概率密度函数;f为最大似然法超越方程函数;为相对相位;W为幅值纹理库;V为相对相位纹理库;I指待检索图像;J指图像库中图像;为I和J之间的欧式距离;为图像I的特征向量在第i个分量处的特征值;
a. 初始设置
获取检索图像库中的图像J并初始化变量;
b. 高频子带获取
对图像J进行PDTDFB变换,得到1个L和若干个H,设置分解参数为 [2 3],即H分解为两个尺度,分别为4个方向和8个方向,每幅图像共得到12个H,每个H包含2个矩阵大小相同的a和b,用表示;
c. 系数幅值Weibull建模
c.1 根据下式对每个H的a和b进行r计算,得到12个幅值子带系数:
c.2 对每幅图像H的12个幅值子带系数采用Weibulll分布概率密度函数进行统计建模,其概率密度函数P可定义为:
;
其中:;
c.3 根据下式计算Weibull分布的形状参数和尺度参数,设给定Weibull分布随机样本为,并假定样本是独立分布的,则有
;
c.4 将得到的Weibull分布的形状参数和尺度参数作为每一幅图像J的特征向量,存入图像幅值纹理库W以待检索使用;
d. 系数相对相位Vonn建模
d.1 根据下式对每个H的a和b进行计算,得到12个相对相位子带系数:
;
d.2 对每幅图像H的12个相对相位子带系数采用Vonn分布概率密度函数进行统计建模,其概率密度函数P可定义为:
;
d.3 应用最大似然法,根据下式估算Vonn分布的位置参数和尺度参数:
;
d.4 将得到的Vonn分布的位置参数和尺度参数作为每一幅图像J的特征向量,存入图像相位纹理库V以待检索使用;
e. 待检索图像处理操作
e.1 输入待检索图像I,对I进行PDTDFB分解,得到1个L和若干个H,设置分解参数为 [2 3],即H分解为两个尺度,分别为4个方向和8个方向,每幅图像共得到12个H,每个H包含2个矩阵大小相同的a和b;
e.2 重复步骤c,对待检索的图像I高频子带的12个幅值子带系数采用Weibulll分布进行建模,计算其形状参数和尺度参数,得到待检索的图像I的特征向量;
e.3 重复步骤d,对待检索的图像I高频子带的12个相对相位子带系数采用vonn分布进行建模,计算其位置参数和尺度参数,得到待检索的图像I的特征向量;
f. 相似度计算
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于辽宁师范大学,未经辽宁师范大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201611199740.8/2.html,转载请声明来源钻瓜专利网。
- 上一篇:数据流通系统及方法
- 下一篇:一种基于突发事件情景链的情景推理方法及系统