[发明专利]一种细胞阵列三维通信传输方法在审
申请号: | 201611238895.8 | 申请日: | 2016-12-28 |
公开(公告)号: | CN108256637A | 公开(公告)日: | 2018-07-06 |
发明(设计)人: | 戴瑾 | 申请(专利权)人: | 上海磁宇信息科技有限公司 |
主分类号: | G06N3/06 | 分类号: | G06N3/06 |
代理公司: | 上海容慧专利代理事务所(普通合伙) 31287 | 代理人: | 于晓菁 |
地址: | 201800 上海*** | 国省代码: | 上海;31 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 细胞阵列 计算单元 硅通孔 总线 神经元 计算系统 通信传输 连通 三维 神经网络芯片 计算器 计算操作 内存单元 三维芯片 网络连通 主控制器 叠合 多层 两层 垂直 芯片 | ||
本发明公开了一种细胞阵列三维通信传输方法,包括:将多层包含细胞阵列计算系统的芯片垂直通过过硅通孔叠合成三维芯片,其中将每一层细胞阵列的总线通过过硅通孔连通起来;使上下相邻的两个细胞阵列神经网络芯片中的计算单元通过过硅通孔进行网络连通,同时将上下相邻的两层阵列的总线连通;其中细胞阵列计算系统包括主控制器、总线、由多个计算单元组成细胞阵列;其中,细胞阵列的每个计算单元包括:用于执行神经元的计算操作的一个或多个神经元计算器、以及内存单元。
技术领域
本发明涉及半导体芯片领域以及人工智能领域,尤其涉及一种细胞阵列三维通信传输方法。
背景技术
人脑是一个由大量神经元复杂连接的网络。每个神经元通过大量的树突连接大量的其他神经元,接收信息,每一个连接点叫突触(Synapse)。在外部刺激积累到一定程度后,产生一个刺激信号,通过轴突传送出去。轴突有大量的末梢,通过突触,连接到大量其他神经元的树突。就是这样一个由简单功能的神经元组成的网络,实现了人类所有的智能活动。人的记忆和智能,普遍被认为存储在每一个突触的不同的耦合强度里。
神经元的反应频率不超过100Hz,现代计算机的CPU比人脑快1000万倍,但处理很多复杂问题的能力不如人脑。这促使了计算机行业开始模仿人脑。最早的对人脑的模仿,是在软件层面的。
神经网络(Neural Networks)是计算机学习中常用的算法。神经网络算法中的神经元就是一个函数,它有很多个输入,每一个输入都对应着一个权重。一般的算法是每一个输入乘以权重在相加。它输出0或1(由一个阈值决定),或者一个介于0和1之间的值。一个典型的神经网络,是把大量细胞阵列(Neuron)的输出输入连接在一起的网络,通常组织成多级架构。它内部有很多个参数(权重、阈值),学习训练的过程就是调整这些参数。这是一个需要海量计算的函数优化。这类算法,已经取得了丰富的成果,得到广泛应用。
神经网络算法中的网络都是分成很多层的。最早的网络,上一层的每一个神经元和下一层的每一个神经元连接,成为全连通的网络。全连通网络的一个问题,在于图像处理这类应用中,图像的像素很多,每一层需要的权重数量正比于像素平方,由此该方案占用内存太大,计算量更是无法应付。
在卷积神经网络中,前面的很多层不再是全连通的。每一层的神经元作为一个图像被排成阵列。下一层的每一个神经元只和这一层的一个小区域连通。小区域常常是一个边长为k的方形区域,k称为卷积网络的内核尺寸(Kernel Size),如图1所示。
卷积神经网络(Convolutional Neural Network,CNN)因为对这个小区域的各个点加权重的求和类似卷积而得名。这一组权重在各个同一层细胞中的各个点都是一样的(既平移不变性),从而跟全连通网络相比大幅度减少权重数量,使得高分辨率的图像处理成为可能。一个卷积神经网络包括多个这样连通的层,以及其他种类的层。
随着深度学习应用的普及,人们开始开发专用的神经网络芯片。用专用电路实现神经元计算的加法和乘法,比用CPU或者GPU高效得多。
磁阻式随机访问存储器(Magnetic Random Access Memory,MRAM)是一种新的内存和存储技术,可以像SRAM/DRAM一样快速随机读写,并且比DRAM快;还可以像闪存一样在断电后永久保留数据,并且不像NAND它可以不限次地擦写。
MRAM的经济性想当地好,单位容量占用的硅片面积比SRAM(通常作为CPU的缓存)有很大的优势,有望接近DRAM的水平。它的性能也相当好,读写时延接近最好的SRAM,功耗则在各种内存和存储技术最好。而且MRAM不像DRAM以及闪存那样与标准CMOS半导体工艺不兼容。MRAM可以和逻辑电路集成到一个芯片中。有了MRAM技术,就可以把内存、存储、计算三个功能集成到一个芯片上来。新的计算架构就有可能。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于上海磁宇信息科技有限公司,未经上海磁宇信息科技有限公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201611238895.8/2.html,转载请声明来源钻瓜专利网。