[发明专利]一种机动车尾气排放数据融合系统有效

专利信息
申请号: 201611267878.7 申请日: 2016-12-31
公开(公告)号: CN106650825B 公开(公告)日: 2020-05-12
发明(设计)人: 康宇;李泽瑞;陈绍冯;王雪峰;杨钰潇 申请(专利权)人: 中国科学技术大学
主分类号: G06K9/62 分类号: G06K9/62;G06N3/04
代理公司: 北京科迪生专利代理有限责任公司 11251 代理人: 杨学明;顾炜
地址: 230026 安*** 国省代码: 安徽;34
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 一种 机动车 尾气 排放 数据 融合 系统
【权利要求书】:

1.一种机动车尾气排放数据融合系统,其特征在于:包括道边空气污染物浓度估计模块、道边空气污染物浓度预报模块、城市全局大气环境预测模块、机动车尾气排放因子估计模块与机动车尾气排放特征分析模块;实现对机动车尾气遥测数据及机动车属性、行驶工况、检测时间、气象条件数据的存储、分析与融合,结合车载诊断系统数据库、便携式排放测试系统数据库、车检所离线数据库、交通信息数据库与地理信息数据库,对机动车尾气遥测数据进行分析处理,实现机动车尾气排放因子估计、机动车尾气排放特征分析、道边空气污染物浓度估计、道边空气污染物浓度预测及城市全局环境预测,为环保部门的政策制定与执法提供科学依据;

道边空气污染物浓度估计模块,使用一种基于重构深度学习的道边空气污染物浓度预测方法来实现,根据道边空气污染物的时空分布特点,基于重构深度学习方法对深度重构Elman模型进行训练,当训练完成后,输入实时的路网信息、气象信息和交通信息,即可获得实时的道边空气污染物浓度估计值;具体包含以下步骤:

步骤1:基于重构深度学习方法,根据道边空气污染物的时空分布特点,形成道路空气污染物浓度数据集,构建深度重构Elman模型;所述道边空气污染物包括一氧化碳CO、二氧化碳CO2、氮氧化物NOx;所述深度重构Elman模型包括:主网络和次网络;主网络具有前馈连接和反馈连接结构,含有局部记忆能力,主网络依次由输入层、承接层、中间层和输出层构成;次网络用于主网络初始化,次网络含有一个可视层和一个隐含层;

步骤2:根据限制玻耳兹曼机的特征,从道边空气污染物浓度数据集中随机选取部分数据,完成深度重构Elman模型的初始化;

步骤3:采用梯度下降算法,对深度重构Elman模型进行训练,得到能够对道边空气污染物浓度进行实时预测的深度重构Elman模型,以实时的路网信息、气象信息、交通信息因素作为Elman模型的输入,Elman模型输出为对应的实时道边空气污染物浓度;所述路网信息包括路段车道数、道路绿化程度、道路建筑物高度、建筑物与道边距离;所述气象信息包括温度、湿度、天气、风速和风向;所述交通信息包括车种比例、车流量、通过时间、停止时间和拥塞时间;

道边空气污染物浓度预报模块,使用一种基于LSTM-RNN模型的空气污染物浓度预报方法来实现,根据历史空气污染物浓度数据,提出基于LSTM-RNN模型的预报方法,模型训练完成后,该模型可预报当前或未来某一时刻的空气污染物浓度;具体包含以下步骤:

步骤一,首先收集目标城市较长时间内的空气污染物浓度数据,作为历史数据,并存入数据库;

步骤二,然后通过对收集到的历史数据进行预处理,构造待训练的LSTM-RNN(LongShort-Term Memory,长短时记忆)模型的训练样本数据、验证样本数据和测试样本数据;

步骤三,通过训练样本数据得到预先训练的LSTM-RNN模型,然后通过构造的验证样本数据和测试样本数据微调训练得到的LSTM-RNN模型参数,通过进一步修正LSTM-RNN模型参数,提高LSTM-RNN模型精度,将该修正后的LSTM-RNN模型作为空气污染物浓度预报模型;

步骤四,将预处理后的目标城市较长时间内的空气污染物浓度数据作为LSTM-RNN模型的输入数据,通过LSTM-RNN模型对输入数据进行学习,最终LSTM-RNN模型输出得到当前或未来某一时刻的空气污染物浓度预报的结果;

城市全局大气环境预测模块,使用一种基于CFD及多数据源的城市实时全局环境估计方法来实现,结合城市环境监测站点历史数据、全球中尺度气象预测结果、国家气象数据、城市重点污染源数据、城市地理三维模型及机动车尾气遥测设备的实时监测数据,利用流体力学CFD作为计算引擎,根据气象信息自适应切换环境质量模式,采用多尺度网格离散化城市模型并引入多组分污染模型,实现城市全局大气环境的实时预测;具体包含以下步骤:

步骤一,提取城市三维模型数据,使用模型片段数简化方法进行所述三维模型融合,并将地理信息映射到所述三维模型,生成具有地理信息的简化城市三维模型;

步骤二,选定城市的待求解区域,在待求解区域中,对步骤一所得简化城市三维模型进行六面体网格划分,融入城市重点污染源GIS信息及城市主要街道GIS信息,然后使用多尺度网格划分方法对重点污染源区域、主要街道进行细网格划分,生成多尺度网格化城市三维模型;

步骤三,使用Realizable k-ε湍流模型封闭城市大气流场方程,加入太阳辐射方程,得到城市大气流场控制方程;

步骤四,将城市重点污染源的排放数据、机动车尾气排放的实时数据通过匹配地理位置坐标点方法,映射到步骤二所得城市三维模型重点污染源位置及主要街道位置所在处,生成城市重点污染源排放时空分布Q1j1,ξ2,ξ3,t),其中ξ1,ξ2,ξ3为坐标变量,t为时间变量;及主要街道尾气污染物源浓度分布Q2j1,ξ2,t),融合城市环境监测站点污染物浓度数据,采用双线性插值生成全局污染物浓度初步估计分布Yenv,j,使用污染物输送方程综合上述所述三种数据源,即Q1j1,ξ2,ξ3,t)、Q2j1,ξ2,t)和Yenv,j,得到实时污染物输送模型;

步骤五,将多数据源全国尺度风场、污染物分布数据及ECMWF气象数据,作为城市模型求解区域时变边界参数,利用大气边界层理论得到入流面、出流面、上边界及下垫面边界条件;

步骤六,利用计算流体力学CFD求解器在步骤二所得城市三维网格模型上对第三步所得流场控制方程及第四步污染物输送模型离散化,按步骤五的时变边界条件,进行城市全局流场求解,得到无气象因素实时环境质量分布;

步骤七,结合城市气象数据,针对不同降水气象,包括降雪和降雨,对第六步CFD湍流模型计算所得无气象因素实时环境质量分布的计算结果进行对应沉降作用处理,得到城市实时全局环境质量分布;

步骤八,在步骤七得到当前时刻城市实时全局环境质量分布当前时刻环境质量分布计算结果基础上,载入下一时刻气象数据,重点污染源排放数据,机动车尾气排放数据,进行实时循环计算,生成城市实时全局环境质量分布动态估计;

机动车尾气排放因子估计模块,使用一种基于MLP神经网络的机动车尾气排放因子估计方法来实现,利用机动车尾气遥测设备采集的实际道路上的机动车尾气排放数据以及其他相关数据建立机动车尾气CO、HC及NO的排放因子数据库,并据此建立针对于CO、HC和NO的MLP神经网络模型,实现机动车尾气排放因子的实时在线估计;具体包含以下步骤:

步骤1:利用机动车尾气遥感监测设备采集的实际道路上的机动车尾气排放数据,即机动车行驶时排放的CO2、CO、HC及NO的体积浓度,以及其他相关数据,所述其他相关数据包括:机动车的车型、速度与加速度,以及当前温度、湿度、压强、风向与风速;

步骤2:对步骤1中采集到的机动车的尾气排放数据进行预处理,并建立机动车尾气CO、HC及NO的排放因子数据库;

步骤3:基于步骤2所得到的机动车尾气CO、HC及NO的排放因子数据库,以及步骤1中采集到的其他相关数据分别建立针对于CO、HC和NO的MLP神经网络模型,依据MLP神经网络模型即实现机动车尾气排放因子的实时在线估计;

机动车尾气排放特征分析模块,使用一种基于聚类分析的车辆尾气排放特征分析处理方法来实现,采用灰色关联分析方法从车辆类型、行驶工况、燃料类型、车辆使用年限、气象条件中找出影响尾气排放的主要影响因素,作为车辆尾气排放特征分析的核心维度特征参数,利用基于密度的聚类算法对机动车进行尾气排放贡献程度的分类;具体包括如下步骤:

(1)抽取机动车尾气遥测数据;

(2)对抽取的机动车尾气遥测数据进行预处理;

(3)对步骤(2)中的预处理后的数据,采用灰色关联分析方法从车辆类型、行驶工况、燃料类型、车辆使用年限、气象条件诸多因素找出影响尾气排放的主要影响因素,作为车辆尾气排放特征分析处理的核心维度特征参数,实现尾气污染物排放影响因素关联特征选择,得到影响尾气排放的主要影响因素特征属性;

(4)根据步骤(3)得到的影响尾气排放的主要影响因素特征属性,采用基于密度的聚类算法对检测车辆尾气排放特征数据进行分类得到分群类别,并计算每个排放分群组别的排放得分,然后根据排放得分对分群组别排序,构建车辆尾气排放特征分析处理模型,根据车辆尾气排放特征分析处理模型对车辆尾气排放进行分析处理;

上述五个模块分别实现不同的数据分析功能,选择不同的模块即可实现不同的功能;可以单独使用,也可以两个或两个以上组合作用;

在需要获得实时的道边空气污染物浓度估计值时,采用道边空气污染物浓度估计模块;

在根据历史空气污染物浓度数据预报当前或未来某一时刻的空气污染物浓度时,采用道边空气污染物浓度预报模块;

在需要城市全局大气环境的实时预测时,采用城市全局大气环境预测模块;

在需要进行机动车尾气排放因子的实时在线估计时,采用机动车尾气排放因子估计模块;

在分析影响尾气排放的主要影响因素,或对机动车进行尾气排放贡献程度进行分类时采用机动车尾气排放特征分析模块。

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于中国科学技术大学,未经中国科学技术大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/201611267878.7/1.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top