[发明专利]基于红外光谱分析物质成分含量的增量式方法有效

专利信息
申请号: 201710009517.0 申请日: 2017-01-06
公开(公告)号: CN106596450B 公开(公告)日: 2019-04-05
发明(设计)人: 赵煜辉;单鹏;张洋洋 申请(专利权)人: 东北大学秦皇岛分校
主分类号: G01N21/35 分类号: G01N21/35
代理公司: 北京联创佳为专利事务所(普通合伙) 11362 代理人: 刘美莲;郭防
地址: 066004 河北省秦*** 国省代码: 河北;13
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 基于 红外 光谱分析 物质 成分 含量 增量 方法
【说明书】:

发明涉及一种基于红外光谱分析物质成分含量的增量式方法,包括以下步骤:根据源域红外光谱数据和源域物质成分含量建立第一回归模型;获取目标域标准样本,建立目标域红外光谱标准数据与源域红外光谱数据之间的转移模型;根据所述第一回归模型和所述转移模型建立第二回归模型;获取目标域红外光谱增量数据和目标域物质成分含量增量数据,利用第二回归模型对所述目标域红外光谱增量数据进行筛选,如果满足要求则保留;直至被保留的数量达到阈值,利用所述新目标域标准样本,获取新转移模型和新第二回归模型;获取目标域红外光谱测试数据,根据所述目标域红外光谱测试数据和所述新第二回归模型获取目标域物质成分含量。效率高。

技术领域

本发明涉及红外光谱分析领域,具体而言,涉及一种基于红外光谱分析物质成分含量的增量式方法。

背景技术

通过红外光谱分析可获知物质成分含量。通过测量红外光谱,对其进行分析,从而获知物质成分含量,不仅可以定性分析,也可定量分析。但是在实际的工业生产过程中,数据以数据流的形式不定时到达,当有新的样本到来时,需要对模型进行实时的更新。然而,传统的标定迁移方法均以批处理模型建立模型,只能通过结合新旧数据重复建模的方法来更新模型,这种方法往往需要占用大量的时间和存储空间,不适合实际生产中的应用。

发明内容

本发明为了解决现有的重新建模效率低的问题,提出了一种基于红外光谱分析物质成分含量的增量式方法,包括以下步骤:

S1,根据源域红外光谱数据和与所述源域红外光谱数据对应的源域物质成分含量建立第一回归模型,求取所述第一回归模型中的参数;

S2,获取目标域标准样本,所述目标域标准样本包括目标域红外光谱标准数据和目标域物质浓度标准数据,建立目标域红外光谱标准数据与源域红外光谱数据之间的转移模型,求取所述转移模型中的参数;

S3,根据所述第一回归模型和所述转移模型建立第二回归模型;

S4,获取目标域红外光谱增量数据和目标域物质成分含量增量数据,利用第二回归模型对所述目标域红外光谱增量数据进行筛选,如果满足要求则保留所述目标域红外光谱增量数据和与所述目标域红外光谱增量数据对应的目标域物质成分含量增量数据;

S5,重复执行步骤S4直至被保留的目标域红外光谱增量数据的数量达到阈值,然后形成新目标域标准样本,所述新目标域标准样本包含上述被保留的目标域物质成分含量增量数据和目标域红外光谱增量数据;将所述新目标域标准样本设定为所述目标域标准样本,利用步骤S2和步骤S3获取新转移模型和新第二回归模型;

S6.获取目标域红外光谱测试数据,根据所述目标域红外光谱测试数据和所述新第二回归模型获取目标域物质成分含量。

进一步地,所述利用第二回归模型对所述目标域红外光谱增量数据进行筛选的步骤包括:根据所述目标域红外光谱增量数据和所述第二回归模型获取目标域物质成分含量增量预测数据,比较所述目标域物质成分含量增量数据和所述目标域物质成分含量增量预测数据,如果二者差值大于阈值则满足要求。

进一步地,所述根据所述目标域红外光谱增量数据和所述第二回归模型获取目标域物质成分含量增量预测数据的步骤包括:利用所述目标域标准样本的均值对所述目标域红外光谱增量数据坐中心化处理,利用下式依次递推求取与所述目标域红外光谱增量数据对应的增量光谱特征,其中,i大于等于1且小于等于k,TT_incre为第三光谱特征,k为第三光谱特征的个数,为第二标准投影数据的第i个分量,为中心化处理后的目标域红外光谱增量数据的第i个残差项,为第二标准载荷数据的第i个分狼。;利用下式求取出所述目标域物质成分含量增量预测数据,其中M为转移模型中的参数,B为第一回归模型中的参数,mean(yS_cal)为源域物质成分含量的均值,为目标域物质成分含量增量预测数据。

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于东北大学秦皇岛分校,未经东北大学秦皇岛分校许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/201710009517.0/2.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top