[发明专利]基于深度神经网络的超像素级SAR图像变化检测方法有效

专利信息
申请号: 201710022646.3 申请日: 2017-01-12
公开(公告)号: CN106875395B 公开(公告)日: 2020-04-14
发明(设计)人: 公茂果;武越;雷超;张普照;李豪;刘嘉;王善峰;马晶晶 申请(专利权)人: 西安电子科技大学
主分类号: G06T7/10 分类号: G06T7/10
代理公司: 西安吉盛专利代理有限责任公司 61108 代理人: 张恒阳
地址: 710071 陕西省*** 国省代码: 陕西;61
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 基于 深度 神经网络 像素 sar 图像 变化 检测 方法
【权利要求书】:

1.基于深度神经网络的超像素级SAR图像变化检测方法,其特征在于,包括如下步骤:

(1)对两幅原始图像进行超像素分割,分别得到分割后的图像SI1、SI2和分割轮廓C1、C2

(2)根据两幅原始图像的分割轮廓,进一步进行精细化分割,使得两幅图像得到相同的精细化分割轮廓C和精细化分割后图像S1和S2,并且两幅图像都得到M个对应的超像素块;

(3)求两幅原始图像的差异图,用阈值法或模糊聚类法变化检测方法得到初始变化检测结果图;

(4)使用精细化分割轮廓C去分割初始变化检测结果图,并统计被分割的初始变化检测结果图中每个超像素块中变化与未变化的像素点数目,如果变化的像素点数目大于80%,则该超像素块的标签为变化类,如何未变化的像素点数目大于80%,则该超像素块的标签为未变化类;否则该超像素块为不确定;

(5)建立堆栈去噪自编码深度神经网络模型;

(6)将S1和S2中有确定标签的对应位置的超像素块分别取出,叠加成列向量,输入到建立的堆栈去噪自编码深度神经网络模型中训练;

(7)根据初始变化检测结果图得到的标签,使用反向传播算法调整堆栈去噪自编码深度神经网络模型中各个神经元之间的连接权重,得到最终训练好的模型;

(8)再次将S1和S2对应位置的所有超像素块分别叠加成列向量,输入到训练好的堆栈去噪自编码深度神经网络模型中,深度神经网络模型将判断对应的超像素块是变化的还是未变化的,最终输出变化检测结果的二值图;

步骤(2)所述的精细化分割,具体步骤如下:

将不同的分割轮廓C1和C2进行精细化分割,得到相同的精细化分割轮廓,即C1=C2=C;具体过程为遍历C1和C2每个超像素轮廓的值,如果对应位置轮廓标记相同,则该位置标记不变;如果不同,则该位置赋新的轮廓标记;

其中,

上述公式(1)中,newlabel是表示与C1和C2的标记都不相同的新的标记;

用得到的精细化分割轮廓C重新分割两幅原始图像,得到精细化分割后图像S1和S2,每幅图像都被分割为M个对应的超像素块。

2.根据权利要求1所述的基于深度神经网络的超像素级SAR图像变化检测方法,其特征在于,步骤(4)中用精细化分割轮廓C去分割初始变化检测结果图,得到每个超像素块的标签,按如下方法进行:

用得到的精细化分割轮廓C去分割初始变化检测结果图,并得到分割后的图像D;根据分割后的初始变化检测结果图,确定每一块超像素块的标签;

其中,

上述公式(2)中,(label)j代表第j个超像素块的标签,Dj代表第j个超像素块中像素的总个数,Djunchanged和Djchanged分别代表第j个超像素块中未变化的像素个数和变化的像素个数;用上述公式(2)确定每一块超像素块的标签,0代表该像素块是未变化的,1代表该像素块是变化的。

3.根据权利要求1所述的基于深度神经网络的超像素级SAR图像变化检测方法,其特征在于,步骤(6)所述的将S1和S2中有确定标签的对应超像素块分别取出,叠加成列向量,输入到堆栈去噪自编码深度神经网络模型中训练,按如下方法进行:

分别取出两幅原始图像对应位置的超像素块,将取出的两个对应位置的超像素块中的每个像素组成列向量,并把两个列向量叠加为一个列向量作为训练样本输入到堆栈去噪自编码深度神经网络模型中进行训练,该训练过程是无监督的,训练的数据不需要标签,从底层开始,一层一层的往顶层训练。

4.根据权利要求1所述的基于深度神经网络的超像素级SAR图像变化检测方法,其特征在于,步骤(7)所述的根据初始变化检测结果图得到的标签,调整堆栈去噪自编码深度神经网络模型中各个神经元之间的连接权重,得到最终训练好的深度神经网络模型,按如下方法进行:

堆栈去噪自编码深度神经网络模型在训练之后,使用反向传播算法进行参数调整,即通过带标签的数据去训练,误差自顶向下传输,对深度神经网络模型中节点之间连接的参数进行调整,该调整过程需要使用标签为0或1的超像素块去训练,通过调整节点之间连接的参数得到最终训练好的深度神经网络模型。

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于西安电子科技大学,未经西安电子科技大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/201710022646.3/1.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top