[发明专利]基于灰度约束的三维数字散斑的整像素搜索方法及装置有效

专利信息
申请号: 201710041784.6 申请日: 2017-01-20
公开(公告)号: CN106875443B 公开(公告)日: 2019-08-23
发明(设计)人: 彭翔;何进英;刘晓利;蔡泽伟;汤其剑 申请(专利权)人: 深圳大学
主分类号: G06T7/70 分类号: G06T7/70;G06T17/00
代理公司: 深圳市恒申知识产权事务所(普通合伙) 44312 代理人: 王利彬
地址: 518000 广东*** 国省代码: 广东;44
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 基于 灰度 约束 三维 数字 像素 搜索 方法 装置
【说明书】:

发明公开了一种基于灰度约束的三维数字散斑的整像素搜索方法及装置,该方法包括:按照待测物体的预置深度范围,计算投影校正后的该右散斑图像的视差约束范围,选取投影校正后的该左散斑图像的该散斑区域中像素点作为待测像素点,并在投影校正后的该右散斑图像上选取与该待测像素点位于相同行数且位于该视差约束范围内的待匹配像素点,通过对该待测像素点的灰度值和该待匹配像素点的灰度值进行灰度约束运算,从该待匹配像素点中选出匹配点,使得依据该匹配点与该待测像素点进行相关函数运算,得到整像素对应点,这样可以在极大程度上减少相关函数运算的运算次数,从而缩短运算时长,可以快速的搜索到整像素对应点,提高搜索对应点的效率。

技术领域

本发明属于图像处理领域,尤其涉及一种基于灰度约束的三维数字散斑的整像素搜索方法及装置。

背景技术

数字散斑相关方法(DSCM,Digital Speckle Correlation Method)是日本的Yamaguchi和美国的Peters等人分别独立提出的,其基本原理是利用区域灰度相似性搜索对应点,从而实现物体位移和变形的测量。经典的数字散斑相关搜索方法有双参数法、粗细搜索法、十字搜索法等。传统的数字散斑相关方法只能测量面内位移,所以其只适用于二维变形场的测量。随着立体视觉技术的发展,将其与数字散斑相关方法相结合,可用于三维物体的轮廓测量和变形测量,称为三维数字散斑相关方法。该三维数字散斑相关方法的基本过程是首先使用数字散斑相关方法搜索到整像素级的对应点,然后使用亚像素优化方法得到更精确的亚像素对应点位置,再使用双目立体视觉重建得到三维物体的三维坐标。因此搜索整像素级的对应点的过程是直接影响后续重建三维物体的三维坐标,搜索整像素级的对应点的过程显得尤为重要。

现有的整像素对应点的搜索方法,通常利用双目立体视觉的极线约束,将相关搜索从二维约束到一维,即将对应点的搜索限制在极线上,而非整个图像上,从而可以适当的提高搜索效率。由于原始极线是倾斜的,相关搜索不方便,而且虽然增加了搜索限制,但是依然需要对搜索限制内的待匹配点进行相关函数运算,该搜索的计算量依然很庞大,耗费了大量的时间,搜索效率依然不高,进而影响建立三维物体的三维坐标的效率。

发明内容

本发明提供一种基于灰度约束的三维数字散斑的整像素搜索方法及装置,旨在解决由于现有的整像素对应点的搜索方法依然需要通过大量的计算搜索对应点,进而导致耗时长,搜索效率低的问题。

本发明提供的一种基于灰度约束的三维数字散斑的整像素搜索方法,包括:

通过投影装置向待测物体表面投影随机数字散斑图案,通过放置于所述投影装置两侧的成像装置分别采集带有所述待测物体的左、右散斑图像;

通过为所述左、右散斑图像中每个像素点设置的邻域子窗口计算每个像素点对应的平均差值,并将所述平均差值大于预置数值的像素点所形成的区域作为散斑区域,将所述散斑区域即为物体区域,分别在所述左、右散斑图像中划分出所述物体区域和背景区域;

分别提取划分后的所述左、右散斑图像中的第一极线和第二极线,校正所述第一极线平行于划分后的所述左散斑图像所在坐标系的横轴,以及校正所述第二极线平行于划分后的所述右散斑图像所在坐标系的横轴,并校正所述第一极线和所述第二极线为位于同一水平线的直线,得到投影校正后的所述左散斑图像和投影校正后的所述右散斑图像;

按照所述待测物体的预置深度范围,计算投影校正后的所述右散斑图像的视差约束范围;

选取投影校正后的所述左散斑图像的所述散斑区域中像素点作为待测像素点,并在投影校正后的所述右散斑图像上选取与所述待测像素点位于相同行数且位于所述视差约束范围内的待匹配像素点,通过对所述待测像素点的灰度值和所述待匹配像素点的灰度值进行灰度约束运算,从所述待匹配像素点中选出匹配点,使得依据所述匹配点与所述待测像素点进行相关函数运算,得到整像素对应点。

本发明提供的一种基于灰度约束的三维数字散斑的整像素搜索装置,包括:

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于深圳大学,未经深圳大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/201710041784.6/2.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top